
Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 1 of 16 

 
 
PROJECT DOCUMENTATION 
 

Project Name: Synopse mORMot Framework 

Document Name: Software Requirements Specifications 

Document Revision: 1.17 

Date: September 9, 2012 

Project Manager: Arnaud Bouchez 

 

Document License 

THE ATTACHED DOCUMENTS DESCRIBE INFORMATION RELEASED BY SYNOPSE INFORMATIQUE UNDER 
A GPL 3.0 LICENSE. 

Synopse SQLite3/mORMot Framework Documentation. 
Copyright (C) 2008-2012 Arnaud Bouchez. 
Synopse Informatique - http://synopse.info.. 

This document is free document; you can redistribute it and/or modify it under the terms of the GNU 
General Public License as published by the Free Software Foundation; either version 3 of the License, 
or (at your option) any later version. 

The Synopse mORMot Framework Documentation is distributed in the hope that it will be useful, but 
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR 
A PARTICULAR PURPOSE. See the GNU General Public License for more details. 

You should have received a copy of the GNU General Public License along with this documentation. If 
not, see http://www.gnu.org/licenses.. 

Trademark Notice 

Rather than indicating every occurrence of a trademarked name as such, this document uses the 
names only in an editorial fashion and to the benefit of the trademark owner with no intention of 
infringement of the trademark. 

 
 

Prepared by: Title: Signature: Date 

Arnaud Bouchez Project Manager   

http://synopse.info/
http://www.gnu.org/licenses


Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 2 of 16 

 

Document Purpose 

The Software Requirements Specifications document purpose is to interpret design inputs and specify 
software design features for the Synopse mORMot Framework project. 

The current revision of this document is 1.17. 

 

Related Documents 
 

Name Description  Rev. Date 

DI Design Input Product Specifications  1.17 September 9, 2012 

SAD Software Architecture Design  1.17 September 9, 2012 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 3 of 16 

TTaabbllee  ooff  CCoonntteennttss  
 

Introduction  

Documentation overview 5 

Purpose 5 

Risk Assessment 6 

Responsibilities 6 

Design Input Reference Table 8 

1. Client Server JSON framework  

1.1. Design Input 2.1.1 (Initial release) 9 

1.2. Design Input 2.1.1.1 (Initial release) 9 

1.3. Design Input 2.1.1.2 (Initial release) 10 

1.4. Design Input 2.1.2 (Initial release) 10 

1.5. Design Input 2.1.3 (Initial release) 11 

2. SQlite3 engine  

2.1. Design Input 2.2.1 (Initial release) 12 

2.2. Design Input 2.2.2 (Initial release) 12 

2.3. Design Input 2.2.3 (Initial release) 12 

3. User interface  

3.1. Design Input 2.3 (Initial release) 14 

3.2. Design Input 2.3.1 (Initial release) 15 

3.3. Design Input 2.3.2 (Initial release) 16 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 4 of 16 

Pictures Reference Table 
The following table is a quick-reference guide to all the Pictures referenced in this Software 
Requirements Specifications (SWRS) document. 
 
 

Pictures Page 

Design Inputs, FMEA and Risk Specifications 5 

User Interface generated using TMS components 14 

User Interface generated using VCL components 15 

 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 5 of 16 

IInnttrroodduuccttiioonn  

Documentation overview 
The whole Software documentation process follows the typical steps of this diagram: 

User
Requirements

Design Inputs
(DI)

define

Specifications
(SWRS)

are specified by

Regulatory
Requirements

Architecture + Design
(SAD+SDD)

is implemented by

System-wide
Risk Assessment

SW FMEA
(RK)

defines

Test + Documentation

is associated to

refers to

 
 

Design Inputs, FMEA and Risk Specifications 

Purpose 
This Software Requirements Specifications (SWRS) document applies to the first public release of the 
Synopse mORMot Framework. 

It describes the software implementation of each design input as specified by the Design Input Product 
Specifications (DI) document. 

The sections of this document follow the Design Input Product Specifications (DI) document divisions: 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 6 of 16 

 - Client Server JSON framework (page 9) 
 - SQlite3 engine (page 12) 
 - User interface (page 14) 

For each Design Input item, the corresponding justification is specified, between parenthesis (SCR #65, 
e.g.). 

Every Software Requirements Specifications (SWRS) document item is named about the corresponding 
Design Input Product Specifications (DI) document item, or, in case the initial Design Input is too large 
and must be divided into some SWRS more precise items, an unique name is proposed. 

Risk Assessment 
The Risk assessment indicated below was evaluated as a team work, based on the software solution 
proposed. 

In the following Software Requirements Specifications (SWRS) document, a numerical Risk Assessment 
is given for every Design Input item, according to the Risk Assessment Scale table below. 

A summary explanation is indicated, together with the names of those who made each evaluation. 

 

Risk Assessment Scale 

Severity: identify the severity of incorrect implementation 
 

3 - High Potentially affects a result or safety 

2 - Med Potentially effects one or multiple features for intended operation 

1 - Low Cosmetic or no effect to intended operation 

Probability: identify the probability of incorrect or incomplete implementation 

3 - High No documentation and not familiar with the code area 

2 - Med Documentation but not familiar/familiar but no documentation 

1 - Low Documentation and familiar with the code 

Occurrence: identify the reproducibility of the defect before correction 

3 - High Reproducible: failure inevitable or repeated (>25% failure rate) 

2 - Med Intermittent or recurring: occasional failures (5-25% failure rate) 

1 - Low One time: relatively few or remote likelihood of failure (<5% failure rate) 

Responsibilities 
- Synopse will try to correct any identified issue; 
- The Open Source community will create tickets in a public Tracker web site located at 

http://synopse.info/fossil.. ; 
- Synopse work on the framework is distributed without any warranty, according to the chosen 

license terms; 

http://synopse.info/fossil


Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 7 of 16 

- This documentation is released under the GPL (GNU General Public License) terms, without any 
warranty of any kind. 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 Software Requirements Specifications - Rev. 1.17 Page 8 of 16 

Design Input Reference Table 
The following table is a quick-reference guide to all the software Design Input Product Specifications 
(DI) document items and their corresponding Software Requirements Specifications (SWRS) document 
items. 
 
 

DI # SWRS # Description Page 

2.1.1 DI-2.1.1 The framework shall be Client-Server oriented 9 

2.1.1.1 DI-2.1.1.1 A RESTful mechanism shall be implemented 9 

2.1.1.2 

DI-2.1.1.2.1 
DI-2.1.1.2.2 
DI-2.1.1.2.3 
DI-2.1.1.2.4 

Commmunication should be available directly in the same process 
memory, or remotly using Named Pipes, Windows messages or 
HTTP/1.1 protocols 

10 

2.1.2 DI-2.1.2 UTF-8 JSON format shall be used to communicate 10 

2.1.3 DI-2.1.3 
The framework shall use an innovative ORM (Object-relational 
mapping) approach, based on classes RTTI (Runtime Type 
Information) 

11 

2.2.1 DI-2.2.1 The SQLite3 engine shall be embedded to the framework 12 

2.2.2 DI-2.2.2 
The framework libraries, including all its SQLite3 related features, 
shall be tested using Unitary testing 

12 

2.2.3 DI-2.2.3 
The framework shall be able to access any external database, via 
OleDB, ODBC or direct access for Oracle (OCI) or SQLite3 (for 
external database files) 

12 

2.3 DI-2.3 User Interface and Report generation should be integrated 14 

2.3.1 
DI-2.3.1.1 
DI-2.3.1.2 
DI-2.3.1.3 

An User Interface, with buttons and toolbars shall be easily being 
created from the code, with no RAD needed, using RTTI and data 
auto-description 

15 

2.3.2 DI-2.3.2 
A reporting feature, with full preview and export as PDF or TXT 
files, shall be integrated 

16 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - Client Server JSON framework - Rev. 1.17 Page 9 of 16 

11..  CClliieenntt  SSeerrvveerr  JJSSOONN  ffrraammeewwoorrkk  

1.1. Design Input 2.1.1 (Initial release) 
The framework shall be Client-Server oriented 

Client–Server model of computing is a distributed application structure that partitions tasks or 
workloads between service providers, called servers, and service requesters, called clients. 

Often clients and servers communicate over a computer network on separate hardware, but both 
client and server may reside in the same system. A server machine is a host that is running one or 
more server programs which share its resources with clients. A client does not share any of its 
resources, but requests a server's content or service function. Clients therefore initiate 
communication sessions with servers which await (listen for) incoming requests. 

The Synopse mORMot Framework shall implement such a Client-Server model by a set of dedicated 
classes, over various communication protocols, but in an unified way. Application shall easily change 
the protocol used, just by adjusting the class type used in the client code. By design, the only 
requirement is that protocols and associated parameters are expected to match between the Client 
and the Server. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

1.2. Design Input 2.1.1.1 (Initial release) 
A RESTful mechanism shall be implemented 

REST-style architectures consist of clients and servers, as was stated in SWRS # DI-2.1.1 (page 9). 
Clients initiate requests to servers; servers process requests and return appropriate responses. 
Requests and responses are built around the transfer of "representations" of "resources". A resource 
can be essentially any coherent and meaningful concept that may be addressed. A representation of a 
resource is typically a document that captures the current or intended state of a resource. 

In the Synopse mORMot Framework, so called "resources" are individual records of the underlying 
database, or list of individual fields values extracted from these databases, by a SQL-like query 
statement. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - Client Server JSON framework - Rev. 1.17 Page 10 of 16 

1.3. Design Input 2.1.1.2 (Initial release) 
Commmunication should be available directly in the same process memory, or 
remotly using Named Pipes, Windows messages or HTTP/1.1 protocols 

In computing and telecommunications, a protocol or communications protocol is a formal description 
of message formats and the rules for exchanging those messages. 

The Synopse mORMot Framework shall support the following protocols for remote access, according 
to the Client-Server architecture defined in SWRS # DI-2.1.1 (page 9): 

- Direct in-process communication; 
- Using GDI messages; 
- Using Named pipe; 
- Using HTTP/1.1 over TCP/IP. 

This Design Input shall be traced to the following SWRS items: 

DI-2.1.1.2.1 Client-Server Direct communication shall be available inside the same process. 

DI-2.1.1.2.2 Client-Server Named Pipe communication shall be made available by some 
dedicated classes. 

DI-2.1.1.2.3 Client-Server Windows GDI Messages communication shall be made available 
by some dedicated classes. 

DI-2.1.1.2.4 Client-Server HTTP/1.1 over TCP/IP protocol communication shall be made 
available by some dedicated classes, and ready to be accessed from outside any 
Delphi Client (e.g. the implement should be AJAX ready). 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

1.4. Design Input 2.1.2 (Initial release) 
UTF-8 JSON format shall be used to communicate 

JSON, as defined in the Software Architecture Design (SAD) document, is used in the Synopse mORMot 
Framework for all Client-Server communication. JSON (an acronym for JavaScript Object Notation) is a 
lightweight text-based open standard designed for human-readable data interchange. Despite its 
relationship to JavaScript, it is language-independent, with parsers available for virtually every 
programming language. 

JSON shall be used in the framework for returning individual database record content, in a disposition 
which could make it compatible with direct JavaScript interpretation (i.e. easily creating JavaScript 
object from JSON content, in order to facilitate AJAX application development). From the Client to the 
Server, record content is also JSON-encoded, in order to be easily interpreted by the Server, which will 
convert the supplied field values into proper SQL content, ready to be inserted to the underlying 
database. 

JSON should be used also within the transmission of request rows of data. It therefore provide an easy 
way of data formating between the Client and the Server. 

The Synopse mORMot Framework shall use UTF-8 encoding for the character transmission inside its 
JSON content. UTF-8 (8-bit Unicode Transformation Format) is a variable-length character encoding for 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - Client Server JSON framework - Rev. 1.17 Page 11 of 16 

Unicode. UTF-8 encodes each character (code point) in 1 to 4 octets (8-bit bytes). The first 128 
characters of the Unicode character set (which correspond directly to the ASCII) use a single octet with 
the same binary value as in ASCII. Therefore, UTF-8 can encode any Unicode character, avoiding the 
need to figure out and set a "code page" or otherwise indicate what character set is in use, and 
allowing output in multiple languages at the same time. For many languages there has been more 
than one single-byte encoding in usage, so even knowing the language was insufficient information to 
display it correctly. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

1.5. Design Input 2.1.3 (Initial release) 
The framework shall use an innovative ORM (Object-relational mapping) 
approach, based on classes RTTI (Runtime Type Information) 

ORM, as defined in the Software Architecture Design (SAD) document, is used in the Synopse mORMot 
Framework for accessing data record fields directly from Delphi Code. 

Object-relational mapping (ORM, O/RM, and O/R mapping) is a programming technique for converting 
data between incompatible type systems in relational databases and object-oriented programming 
languages. This creates, in effect, a "virtual object database" that can be used from within the Delphi 
programming language. 

The published properties of classes inheriting from a new generic type named TSQLRecord are used 
to define the field properties of the data. Accessing database records (for reading or update) shall be 
made by using these classes properties, and some dedicated Client-side methods. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - SQlite3 engine - Rev. 1.17 Page 12 of 16 

22..  SSQQlliittee33  eennggiinnee  

2.1. Design Input 2.2.1 (Initial release) 
The SQLite3 engine shall be embedded to the framework 

The SQLite3 database engine is used in the Synopse mORMot Framework as its kernel database 
engine. SQLite3 is an ACID-compliant embedded relational database management system contained in 
a C programming library. 

This library shall be linked statically to the Synopse mORMot Framework, and interact directly from the 
Delphi application process. 

The Synopse mORMot Framework shall enhance the standard SQLite3 database engine by introducing 
some new features stated in the Software Architecture Design (SAD) document, related to the Client-
Server purpose or the framework - see SWRS # DI-2.1.1 (page 9). 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

2.2. Design Input 2.2.2 (Initial release) 
The framework libraries, including all its SQLite3 related features, shall be tested 
using Unitary testing 

The Synopse mORMot Framework shall use all integrated Unitary testing features provided by a 
common testing framework integrated to all Synopse products. This testing shall be defined by classes, 
in which individual published methods define the actual testing of most framework features. 

All testing shall be run at once, for example before any software release, or after any modification to 
the framework code, in order to avoid most regression bug. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

2.3. Design Input 2.2.3 (Initial release) 
The framework shall be able to access any external database, via OleDB, ODBC or 
direct access for Oracle (OCI) or SQLite3 (for external database files) 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - SQlite3 engine - Rev. 1.17 Page 13 of 16 

The following external database providers shall be made available to the framework ORM: 

- Any OleDB provider; 
- Any ODBC provider; 
- Oracle database, via direct OCI client access; 
- SQlite3 database engine. 

A dedicated set of classes shall implement access, together with some advanced syntaxic sugar, like 
fast late-binding, or advanced ORM mechanism, like Virtual Tables. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - User interface - Rev. 1.17 Page 14 of 16 

33..  UUsseerr  iinntteerrffaaccee  

3.1. Design Input 2.3 (Initial release) 
User Interface and Report generation should be integrated 

The Synopse mORMot Framework shall provide User Interface and Report generation from code. 

Such a ribbon-oriented interface shall be made available, in a per-table approach, and associated 
reports. 

Here is a sample of screen content, using proprietary TMS components: 

 
 

User Interface generated using TMS components 

And here is the same application compiled using only VCL components, available from Delphi 6 up to 
XE2: 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - User interface - Rev. 1.17 Page 15 of 16 

 
 

User Interface generated using VCL components 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

3.2. Design Input 2.3.1 (Initial release) 
An User Interface, with buttons and toolbars shall be easily being created from the 
code, with no RAD needed, using RTTI and data auto-description 

The Synopse mORMot Framework shall provide some User-Interface dedicated units, allowing 
database grid display, on screen tool-bar creation (by an internal system of actions using Delphi RTTI - 
see the corresponding paragraph in the Software Architecture Design (SAD) document), and integrated 
reporting - see SWRS # DI-2.3.2 (page 16). 

No RAD approach is to be provided: the Client application User Interface will be designed not by 
putting components on the IDE screen, but directly from code. 

This Design Input shall be traced to the following SWRS items: 

DI-2.3.1.1 A Database Grid shall be made available to provide data browsing in the Client 
Application - it shall handle easy browsing, by column resizing and sorting, on 
the fly customization of the cell content. 

DI-2.3.1.2 Toolbars shall be able to be created from code, using RTTI and enumerations 
types for defining the action. 



Synopse mORMot Framework  
Software Requirements Specifications 1.17 
Date: September 9, 2012  

 

 

 
 SWRS - User interface - Rev. 1.17 Page 16 of 16 

DI-2.3.1.3 Internationalization (i18n) of the whole User Interface shall be made available 
by defined some external text files: Delphi resourcestring shall be translatable 
on the fly, custom window dialogs automaticaly translated before their display, 
and User Interface generated from RTTI should be included in this i18n 
mechanism. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

3.3. Design Input 2.3.2 (Initial release) 
A reporting feature, with full preview and export as PDF or TXT files, shall be 
integrated 

The Synopse mORMot Framework shall provide a reporting feature, which could be used stand-alone, 
or linked to its database mechanism. Reports shall not be created using a RAD approach (e.g. defining 
bands and fields with the mouse on the IDE), but shall be defined from code, by using some dedicated 
methods, adding text, tables or pictures to the report. Therefore, any kind of report shall be 
generated. 

This reports shall be previewed on screen, and exported as PDF or TXT on request. 

RISK 
Severity: 1, Probability: 1, Occurrence: 3 
Initial release 
Risk evaluation team: Arnaud Bouchez 

 


