
Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 1 of 50

PROJECT DOCUMENTATION

Project Name: Synopse mORMot Framework

Document Name: Software Design Document

Document Revision: 1.17

Date: September 9, 2012

Project Manager: Arnaud Bouchez

Document License

THE ATTACHED DOCUMENTS DESCRIBE INFORMATION RELEASED BY SYNOPSE INFORMATIQUE UNDER
A GPL 3.0 LICENSE.

Synopse SQLite3/mORMot Framework Documentation.
Copyright (C) 2008-2012 Arnaud Bouchez.
Synopse Informatique - http://synopse.info..

This document is free document; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.

The Synopse mORMot Framework Documentation is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation. If
not, see http://www.gnu.org/licenses..

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this document uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Prepared by: Title: Signature: Date

Arnaud Bouchez Project Manager

http://synopse.info/
http://www.gnu.org/licenses

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 2 of 50

Document Purpose

The Software Design Document document purpose is to summarize the software DI implementation
for QA review for the Synopse mORMot Framework project.

The current revision of this document is 1.17.

Related Documents

Name Description Rev. Date

DI Design Input Product Specifications 1.17 September 9, 2012

SWRS Software Requirements Specifications 1.17 September 9, 2012

SAD Software Architecture Design 1.17 September 9, 2012

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 3 of 50

TTaabbllee ooff CCoonntteennttss

Introduction

Documentation overview 11

Purpose 11

Responsibilities 12

GNU General Public License 12

Software Design Document Reference Table 23

1. Client Server JSON framework

1.1. SWRS # DI-2.1.1 25

1.1.1. Abstract 25

1.1.2. Implementation 25

1.2. SWRS # DI-2.1.1.1 25

1.2.1. Abstract 25

1.2.2. Implementation 26

1.2.2.1. Server-Side 26

1.2.2.2. Client-Side 26

1.3. SWRS # DI-2.1.1.2 26

1.4. SWRS # DI-2.1.1.2.1 27

1.4.1. Abstract 27

1.4.2. Implementation 27

1.4.2.1. Server-Side 27

1.4.2.2. Client-Side 27

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 4 of 50

1.5. SWRS # DI-2.1.1.2.2 27

1.5.1. Abstract 27

1.5.2. Implementation 27

1.5.2.1. Server-Side 27

1.5.2.2. Client-Side 28

1.6. SWRS # DI-2.1.1.2.3 28

1.6.1. Abstract 28

1.6.2. Implementation 28

1.6.2.1. Server-Side 28

1.6.2.2. Client-Side 28

1.7. SWRS # DI-2.1.1.2.4 28

1.7.1. Abstract 28

1.7.2. Implementation 29

1.7.2.1. Server-Side 29

1.7.2.2. Client-Side 29

1.8. SWRS # DI-2.1.2 29

1.8.1. Abstract 29

1.8.2. Implementation 30

1.8.2.1. JSON-dedicated functions and classes 30

1.8.2.2. Database record level 31

1.8.2.3. Database request table level 31

1.8.2.4. Fast JSON parsing 31

1.9. SWRS # DI-2.1.3 33

1.9.1. Abstract 33

1.9.2. Implementation 33

1.9.3. TSQLRecord table properties 34

1.9.3.1. Per-class variable needed 34

1.9.3.2. Patching a running process code 35

1.9.3.3. Per-class variable in the VMT 35

2. SQlite3 engine

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 5 of 50

2.1. SWRS # DI-2.2.1 38

2.1.1. Abstract 38

2.1.2. Implementation 38

2.1.2.1. Low-Level access to the library 38

2.1.2.1.1. Compilation of the SQLite3 engine 38

2.1.2.1.2. SQLite3 API access 40

2.1.2.2. High level access 40

2.2. SWRS # DI-2.2.2 40

2.2.1. Abstract 40

2.2.2. Implementation 41

2.3. SWRS # DI-2.2.3 41

2.3.1. Abstract 41

2.3.2. SynDB classes 42

2.3.3. Faster late binding 42

2.3.3.1. Speed issue 42

2.3.3.2. Fast and furious 42

2.3.3.3. Implementation 42

2.3.3.4. Hacking the VCL 44

3. User interface

3.1. SWRS # DI-2.3 46

3.1.1. Abstract 46

3.1.2. SynFile main Demo 47

3.2. SWRS # DI-2.3.1.1 47

3.2.1. Abstract 47

3.2.2. Implementation 48

3.3. SWRS # DI-2.3.1.2 48

3.3.1. Abstract 48

3.3.2. Implementation 48

3.3.2.1. Rendering 49

3.3.2.2. Ribbon-like toolbars 49

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 6 of 50

3.3.2.3. Stand-alone toolbars 49

3.4. SWRS # DI-2.3.1.3 49

3.4.1. Abstract 49

3.4.2. Implementation 50

3.5. SWRS # DI-2.3.2 50

3.5.1. Abstract 50

3.5.2. Implementation 50

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 7 of 50

Pictures Reference Table
The following table is a quick-reference guide to all the Pictures referenced in this Software Design
Document (SDD) document.

Pictures Page

Design Inputs, FMEA and Risk Specifications 11

TSynTestCase classes hierarchy 41

User Interface generated using TMS components 46

User Interface generated using VCL components 47

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 8 of 50

Source code File Names Reference Table
The following table is a quick-reference guide to all the Source code File Names referenced in this
Software Design Document (SDD) document.

Others - Source Reference Table

 Source code File Names Page

 Lib\SQLite3\SQLite3.pas 38, 41

 Lib\SQLite3\SQLite3Commons.pas
25, 26, 27, 28, 28, 29, 30,

34, 38, 41

 Lib\SQLite3\SQLite3HttpClient.pas 29

 Lib\SQLite3\SQLite3HttpServer.pas 29, 41

 Lib\SQLite3\SQLite3i18n.pas 50

 Lib\SQLite3\SQLite3Pages.pas 50

 Lib\SQLite3\SQLite3ToolBar.pas 48, 49

 Lib\SQLite3\SQLite3UI.pas 48

 Lib\SynCommons.pas 30, 41

 Lib\SynCrtSock.pas 29

 Lib\SynGdiPlus.pas 50

 Lib\SynPdf.pas 50

 Lib\SynSQLite3.pas 38

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 9 of 50

Keywords Reference Table
The following table is a quick-reference guide to all the Keywords referenced in this Software Design
Document (SDD) document.

6

64 bit 34

C

Camel 49

Client-Server 25

E

Enumerate 49

I

ISO 8601 48

O

ORM 25, 34, 37, 40, 48

R

REST 26, 40

RTTI 34, 34, 34, 48, 49

S

Service 30

SQL 40

T

TCreateTime 48

TDateTime 48

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 10 of 50

Test 41

TModTime 48

TTimeLog 48

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 11 of 50

IInnttrroodduuccttiioonn

Documentation overview
The whole Software documentation process follows the typical steps of this diagram:

User
Requirements

Design Inputs
(DI)

define

Specifications
(SWRS)

are specified by

Regulatory
Requirements

Architecture + Design
(SAD+SDD)

is implemented by

System-wide
Risk Assessment

SW FMEA
(RK)

defines

Test + Documentation

is associated to

refers to

Design Inputs, FMEA and Risk Specifications

Purpose
This Software Design Document (SDD) document applies to the release of the Synopse mORMot
Framework library.

It summarizes the software implementation of each design input as specified by the Design Input
Product Specifications (DI) document.

This document is divided into the main parts of the Software implementation:

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 12 of 50

 - Client Server JSON framework (page 25)
 - SQlite3 engine (page 38)
 - User interface (page 46)

Inside this sections, source code or User Interface modifications are detailed for every Software
Requirements Specifications (SWRS) document item.

Responsibilities
- Synopse will try to correct any identified issue;
- The Open Source community will create tickets in a public Tracker web site located at

http://synopse.info/fossil.. ;
- Synopse work on the framework is distributed without any warranty, according to the chosen

license terms;
- This documentation is released under the GPL (GNU General Public License) terms, without any

warranty of any kind.

GNU General Public License
 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

http://synopse.info/fossil

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 13 of 50

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 14 of 50

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 15 of 50

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 16 of 50

 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 17 of 50

 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 18 of 50

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 19 of 50

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 20 of 50

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 21 of 50

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 22 of 50

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 23 of 50

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Software Design Document Reference Table
The following table is a quick-reference guide to all the Software Requirements Specifications (SWRS)
document items.

SWRS # Description Page

DI-2.1.1 The framework shall be Client-Server oriented 25

DI-2.1.1.1 A RESTful mechanism shall be implemented 25

DI-2.1.1.2
Commmunication should be available directly in the same process
memory, or remotly using Named Pipes, Windows messages or HTTP/1.1
protocols

26

DI-2.1.1.2.1
Client-Server Direct communication shall be available inside the same
process

27

DI-2.1.1.2.2
Client-Server Named Pipe communication shall be made available by
some dedicated classes

27

DI-2.1.1.2.3
Client-Server Windows GDI Messages communication shall be made
available by some dedicated classes

28

DI-2.1.1.2.4
Client-Server HTTP/1.1 over TCP/IP protocol communication shall be made
available by some dedicated classes, and ready to be accessed from
outside any Delphi Client (e.g. the implement should be AJAX ready)

28

DI-2.1.2 UTF-8 JSON format shall be used to communicate 29

DI-2.1.3
The framework shall use an innovative ORM (Object-relational mapping)
approach, based on classes RTTI (Runtime Type Information)

33

DI-2.2.1 The SQLite3 engine shall be embedded to the framework 38

DI-2.2.2
The framework libraries, including all its SQLite3 related features, shall be
tested using Unitary testing

40

DI-2.2.3
The framework shall be able to access any external database, via OleDB,
ODBC or direct access for Oracle (OCI) or SQLite3 (for external database
files)

41

DI-2.3 User Interface and Report generation should be integrated 46

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 Software Design Document - Rev. 1.17 Page 24 of 50

SWRS # Description Page

DI-2.3.1.1
A Database Grid shall be made available to provide data browsing in the
Client Application - it shall handle easy browsing, by column resizing and
sorting, on the fly customization of the cell content

47

DI-2.3.1.2
Toolbars shall be able to be created from code, using RTTI and
enumerations types for defining the action

48

DI-2.3.1.3

Internationalization (i18n) of the whole User Interface shall be made
available by defined some external text files: Delphi resourcestring shall
be translatable on the fly, custom window dialogs automaticaly translated
before their display, and User Interface generated from RTTI should be
included in this i18n mechanism

49

DI-2.3.2
A reporting feature, with full preview and export as PDF or TXT files, shall
be integrated

50

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 25 of 50

11.. CClliieenntt SSeerrvveerr JJSSOONN ffrraammeewwoorrkk

1.1. SWRS # DI-2.1.1
The framework shall be Client-Server oriented

1.1.1. Abstract

Design Input 2.1.1 (Initial release): The framework shall be Client-Server oriented.

Client–Server model of computing is a distributed application structure that partitions tasks or
workloads between service providers, called servers, and service requesters, called clients.

Often clients and servers communicate over a computer network on separate hardware, but both
client and server may reside in the same system. A server machine is a host that is running one or
more server programs which share its resources with clients. A client does not share any of its
resources, but requests a server's content or service function. Clients therefore initiate
communication sessions with servers which await (listen for) incoming requests.

The Synopse mORMot Framework shall implement such a Client-Server model by a set of dedicated
classes, over various communication protocols, but in an unified way. Application shall easily change
the protocol used, just by adjusting the class type used in the client code. By design, the only
requirement is that protocols and associated parameters are expected to match between the Client
and the Server.

1.1.2. Implementation

The Client-Server aspect of the framework is implemented in the SQLite3Commons.pas unit, with the
TSQLRestServer and TSQLRestClientURI classes.

Both classes inherit from a generic TSQLRest class, which implements some generic database access
methods and properties (through ORM model for objects descending from TSQLRecord or table-based
query using TSQLTableJSON).

1.2. SWRS # DI-2.1.1.1
A RESTful mechanism shall be implemented

1.2.1. Abstract

Design Input 2.1.1.1 (Initial release): A RESTful mechanism shall be implemented.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 26 of 50

REST-style architectures consist of clients and servers, as was stated in SWRS # DI-2.1.1. Clients initiate
requests to servers; servers process requests and return appropriate responses. Requests and
responses are built around the transfer of "representations" of "resources". A resource can be
essentially any coherent and meaningful concept that may be addressed. A representation of a
resource is typically a document that captures the current or intended state of a resource.

In the Synopse mORMot Framework, so called "resources" are individual records of the underlying
database, or list of individual fields values extracted from these databases, by a SQL-like query
statement.

1.2.2. Implementation

The RESTful mechanism is implemented using the URI method of both TSQLRestServer and
TSQLRestClientURI classes, as defined in the SQLite3Commons.pas unit.

1.2.2.1. Server-Side

In the TSQLRestServer class, the URI method is defined as public, and must implement the actual
database query or update, according to the REST request:

function TSQLRestServer.URI(const url, method: RawUTF8; const SentData: RawUTF8;
 out Resp, Head: RawUTF8; const RestAccessRights: TSQLAccessRights): Int64Rec;

The purpose of this method is to:

- Return internal database state count (used for caching);
- Retrieve URI expecting the RESTful 'ModelRoot[/TableName[/ID[/BlobFieldName]]]' format;
- Call appropriate database commands, by using the protected EngineList EngineRetrieve

EngineAdd EngineUpdate EngineDelete EngineRetrieveBlob EngineUpdateBlob methods.

The TSQLRestServer class itself doesn't implement these database command methods: they are all
defined as virtual; abstract;. Children classes must override these virtual methods, and
implement them using the corresponding database engine.

1.2.2.2. Client-Side

In the TSQLRestClientURI class, the URI method is defined as protected and as virtual;
abstract;. Children classes must override this method, and implement the remote database query or
update, according to the REST request, and its internal protocol.

1.3. SWRS # DI-2.1.1.2
Commmunication should be available directly in the same process
memory, or remotly using Named Pipes, Windows messages or
HTTP/1.1 protocols

Design Input 2.1.1.2 (Initial release): Commmunication should be available directly in the same process
memory, or remotly using Named Pipes, Windows messages or HTTP/1.1 protocols.

In computing and telecommunications, a protocol or communications protocol is a formal description
of message formats and the rules for exchanging those messages.

The Synopse mORMot Framework shall support the following protocols for remote access, according
to the Client-Server architecture defined in SWRS # DI-2.1.1:

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 27 of 50

- Direct in-process communication;
- Using GDI messages;
- Using Named pipe;
- Using HTTP/1.1 over TCP/IP.

1.4. SWRS # DI-2.1.1.2.1
Client-Server Direct communication shall be available inside the same
process

1.4.1. Abstract

Client-Server Direct communication shall be available inside the same process.

1.4.2. Implementation

The in-process communication is implemented by using a global function, named URIRequest and
defined in SQLite3Commons.pas:

function URIRequest(url, method, SendData: PUTF8Char; Resp, Head: PPUTF8Char): Int64Rec; cdecl;

1.4.2.1. Server-Side

This function can be exported from a DLL to remotely access to a TSQLRestServer, or used in the
same process:

- Use TSQLRestServer.ExportServer to assign a server to this function;
- Return 501 NOT IMPLEMENTED error if no TSQLRestServer.ExportServer has been assigned yet;
- Memory for Resp and Head parameters are allocated with GlobalAlloc() Win32 API function:

client must release this pointers with GlobalFree() after having retrieved their content - you can
force using the Delphi heap (and GetMem function which is much faster than GlobalAlloc) by
setting the USEFASTMM4ALLOC variable to TRUE: in this case, client must release this pointers with
Freemem().

1.4.2.2. Client-Side

The Client should simply use a TSQLRestClientURIDll instance to access to an exported
URIRequest() function.

1.5. SWRS # DI-2.1.1.2.2
Client-Server Named Pipe communication shall be made available by
some dedicated classes

1.5.1. Abstract

Client-Server Named Pipe communication shall be made available by some dedicated classes.

1.5.2. Implementation

1.5.2.1. Server-Side

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 28 of 50

The communication is implemented by using the TSQLRestServer class, defined in
SQLite3Commons.pas.

This class implements a server over Named Pipe communication, when its ExportServerNamedPipe
method is called.

1.5.2.2. Client-Side

A dedicated TSQLRestClientURINamedPipe class has been defined. It inherits from
TSQLRestClientURI, and override its URI protected method so that it communicates using a specified
Named Pipe.

1.6. SWRS # DI-2.1.1.2.3
Client-Server Windows GDI Messages communication shall be made
available by some dedicated classes

1.6.1. Abstract

Client-Server Windows GDI Messages communication shall be made available by some dedicated
classes.

1.6.2. Implementation

Communication using Win32 GDI messages is very handy and efficient on the same computer. It's also
perfectly safe, because, by design, it can't be access remotely. Performances for small messages is also
excellent. Named pipe could be faster only when bigger messages are transmitted.

1.6.2.1. Server-Side

The communication is implemented by using the TSQLRestServer class, defined in
SQLite3Commons.pas.

This class implements a server over Win32 GDI messages communication, when its
ExportServerMessage method is called.

1.6.2.2. Client-Side

A dedicated TSQLRestClientURIMessage class has been defined. It inherits from
TSQLRestClientURI, and override its URI protected method so that it communicates using Win32 GDI
messages.

1.7. SWRS # DI-2.1.1.2.4
Client-Server HTTP/1.1 over TCP/IP protocol communication shall be
made available by some dedicated classes, and ready to be accessed
from outside any Delphi Client (e.g. the implement should be AJAX
ready)

1.7.1. Abstract

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 29 of 50

Client-Server HTTP/1.1 over TCP/IP protocol communication shall be made available by some
dedicated classes, and ready to be accessed from outside any Delphi Client (e.g. the implement should
be AJAX ready).

1.7.2. Implementation

1.7.2.1. Server-Side

The communication is not implemented directly in the TSQLRestServer class, defined in
SQLite3Commons.pas, but by a dedicated TSQLite3HttpServer class defined in
SQLite3HttpServer.pas.

This class will instantiate a THttpServerGeneric instance, defined in SynCrtSock.pas, which
implements a HTTP/1.1 server over TCP/IP communication.

This server is implemented either:

- Via THttpApiServer for using the fast kernel-mode http.sys server;
- Via THttpServer, which is an optimized pure Delphi HTTP/1.1 compliant server, using Thread pool

to reduce resources, and provide best possible performance in user land.

You can register several TSQLRestServer instance to the same HTTP server, via its AddServer
method. Each TSQLRestServer class must have an unique Model.Root value, to identify which
instance must handle a particular request from its URI root string.

A dedicated property, named DBServer, is an array to all registered TSQLRestServer instances, which
are used to process any request, and answer to it by using the corresponding URI method - via the
OnRequest standard event prototype.

1.7.2.2. Client-Side

A dedicated TSQLite3HttpClient class has been defined in SQLite3HttpClient.pas. It inherits from
TSQLRestClientURI, and override its URI protected method so that it communicates using HTTP/1.1
protocol over TCP/IP, according to the supplied HTTP address name.

By default, TSQLite3HttpClient maps to a TSQLite3HttpClientWinHTTP class, which was found out
to perform well on most configurations and networks (whereas TSQLite3HttpClientWinSock should
be a bit faster on a local computer).

1.8. SWRS # DI-2.1.2
UTF-8 JSON format shall be used to communicate

1.8.1. Abstract

Design Input 2.1.2 (Initial release): UTF-8 JSON format shall be used to communicate.

JSON, as defined in the Software Architecture Design (SAD) document, is used in the Synopse mORMot
Framework for all Client-Server communication. JSON (an acronym for JavaScript Object Notation) is a
lightweight text-based open standard designed for human-readable data interchange. Despite its
relationship to JavaScript, it is language-independent, with parsers available for virtually every
programming language.

JSON shall be used in the framework for returning individual database record content, in a disposition

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 30 of 50

which could make it compatible with direct JavaScript interpretation (i.e. easily creating JavaScript
object from JSON content, in order to facilitate AJAX application development). From the Client to the
Server, record content is also JSON-encoded, in order to be easily interpreted by the Server, which will
convert the supplied field values into proper SQL content, ready to be inserted to the underlying
database.

JSON should be used also within the transmission of request rows of data. It therefore provide an easy
way of data formating between the Client and the Server.

The Synopse mORMot Framework shall use UTF-8 encoding for the character transmission inside its
JSON content. UTF-8 (8-bit Unicode Transformation Format) is a variable-length character encoding for
Unicode. UTF-8 encodes each character (code point) in 1 to 4 octets (8-bit bytes). The first 128
characters of the Unicode character set (which correspond directly to the ASCII) use a single octet with
the same binary value as in ASCII. Therefore, UTF-8 can encode any Unicode character, avoiding the
need to figure out and set a "code page" or otherwise indicate what character set is in use, and
allowing output in multiple languages at the same time. For many languages there has been more
than one single-byte encoding in usage, so even knowing the language was insufficient information to
display it correctly.

1.8.2. Implementation

The JSON parsing and producing is implemented in the SynCommons.pas and SQLite3Commons.pas
units.

The JSON encoding and decoding is handled at diverse levels:

- With some JSON-dedicated functions and classes;
- At the database record level;
- At the database request table level.

1.8.2.1. JSON-dedicated functions and classes

The main class for producing JSON content is TJSONWriter. This class is a simple writer to a Stream,
specialized for the JSON format. Since it makes

use of an internal buffer, and avoid most temporary string allocation (e.g. using the stack instead of
a temporary string via IntToStr() when converting a numerical value to text), it is much faster than
a string append (standard Delphi string := string+string clauses) to produce its content. In
particular, its AddJSONEscape method will handle JSON content escape, according to the official JSON
RFC - see http://www.ietf.org/rfc/rfc4627.txt.. paragraph 2.5, directly into the destination buffer. It
was also designed to scales well on multi-core sytems.

Some JSON-dedicated function are also available:

- GetJSONObjectAsSQL decodes a JSON fields object into an UTF-8 encoded SQL-ready statement;
- IsJSONString returns TRUE if the supplied content must be encoded as a JSON string according to

the JSON encoding schema, i.e. if it's some null/false/true content or any pure numerical data
(integer or floating point);

- UnJSONFirstField can be used to retrieve the FIRST field value of the FIRST row, from a JSON
content: it may be useful to get an ID without converting the whole JSON content into a
TSQLTableJSON;

- JSONEncode and JSONDecode functions are available to directly encode or decode some UTF-8 JSON
content (used in the remote Service implementation, for instance).

http://www.ietf.org/rfc/rfc4627.txt

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 31 of 50

1.8.2.2. Database record level

The TJSONWriter class (based on TTextWriter) is used by the GetJSONValues method of the
TSQLRecord class to get all the data of a database record as JSON content.

Here is an extract of the main loop of this method:

procedure TSQLTable.GetJSONValues(JSON: TStream; Expand: boolean;
 RowFirst: integer=0; RowLast: integer=0);
 (...)
 for R := RowFirst to RowLast do
 begin
 if Expand then
 W.Add('{');
 for F := 0 to FieldCount-1 do
 begin
 if Expand then
 W.AddString(W.ColNames[F]); // '"'+ColNames[]+'":'
 if Assigned(QueryTables) then
 if IsJSONString(U^) then
 begin
 W.Add('"');
 W.AddJSONEscape(U^,0);
 W.Add('"');
 end else
 W.AddNoJSONEscape(U^,0);
 W.Add(',');
 inc(U); // points to next value
 end;
 W.CancelLastComma; // cancel last ','
 if Expand then
 W.Add('}');
 W.Add(',');
 end;
 (...)

1.8.2.3. Database request table level

Most high-level Client-sided list request methods returns a TSQLTableJSON instance as a result. This
TSQLTableJSON class has been created from a pure JSON content, retrieved from the Server using on
of the protocols defined in SWRS # DI-2.1.1.2.

Its Create constructor method call its internal protected method named FillFrom(), which make
the JSON conversion into pure UTF-8 text fields, as expected by the TSQLTable class and its various
Get*() methods. The FillFrom() method implements a very fast parsing of the supplied JSON
content, then un-escape its content according to the JSON RFC quoted above.

1.8.2.4. Fast JSON parsing

When it deals with parsing some (textual) content, two directions are usually envisaged. In the XML
world, you have usually to make a choice between:

- A DOM parser, which creates an in-memory tree structure of objects mapping the XML nodes;
- A SAX parser, which reads the XML content, then call pre-defined events for each XML content

element.

In fact, DOM parsers use internally a SAX parser to read the XML content. Therefore, with the
overhead of object creation and their property initialization, DOM parsers are typically three to five
times slower than SAX. But, DOM parsers are much more powerful for handling the data: as soon as
it's mapped in native objects, code can access with no time to any given node, whereas a SAX-based

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 32 of 50

access will have to read again the whole XML content.

Most JSON parser available in Delphi use a DOM-like approach. For instance, the DBXJSON unit
included since Delphi 2010 or the SuperObject library create a class instance mapping each JSON node.

In a JSON-based Client-Server ORM like ours, profiling shows that a lot of time is spent in JSON parsing,
on both Client and Server side. Therefore, we tried to optimize this part of the library.

In order to achieve best speed, we try to use a mixed approach:

- All the necessary conversion (e.g. un-escape text) is made in-memory, from and within the JSON
buffer, to avoid memory allocation;

- The parser returns pointers to the converted elements (just like the vtd-xml library).

In practice, here is how it is implemented:

- A private copy of the source JSON data is made internally (so that the Client-Side method used to
retrieve this data can safely free all allocated memory);

- The source JSON data is parsed, and replaced by the UTF-8 text un-escaped content, in the same
internal buffer (for example, strings are un-escaped and #0 are added at the end of any field value;
and numerical values remains text-encoded in place, and will be extracted into Int64 or double
only if needed);

- Since data is replaced in-memory (JSON data is a bit more verbose than pure UTF-8 text so we have
enough space), no memory allocation is performed during the parsing: the whole process is very
fast, not noticeably slower than a SAX approach;

- This very profiled code (using pointers and tuned code) results in a very fast parsing and conversion.

This parsing "magic" is done in the GetJSONField function, as defined in the SynCommons.pas unit:

/// decode a JSON field in an UTF-8 encoded buffer (used in TSQLTableJSON.Create)
// - this function decodes in the P^ buffer memory itself (no memory allocation
// or copy), for faster process - so take care that it's an unique string
// - PDest points to the next field to be decoded, or nil on any unexpected end
// - null is decoded as nil
// - '"strings"' are decoded as 'strings'
// - strings are JSON unescaped (and \u0123 is converted to UTF-8 chars)
// - any integer value is left as its ascii representation
// - wasString is set to true if the JSON value was a "string"
// - works for both field names or values (e.g. '"FieldName":' or 'Value,')
// - EndOfObject (if not nil) is set to the JSON value char (',' ':' or '}' e.g.)
function GetJSONField(P: PUTF8Char; out PDest: PUTF8Char;
 wasString: PBoolean=nil; EndOfObject: PUTF8Char=nil): PUTF8Char;

This function allows to iterate throughout the whole JSON buffer content, retrieving values or
property names, and checking EndOfObject returning value to handle the JSON structure.

This in-place parsing of textual content is one of the main reason why we used UTF-8 (via RawUTF8) as
the common string type in our framework, and not the generic string type, which would have
introduced a memory allocation and a char-set conversion.

For instance, here is how JSON content is converted into SQL, as fast as possible:

function GetJSONObjectAsSQL(var P: PUTF8Char; const Fields: TRawUTF8DynArray;
 Update, InlinedParams: boolean): RawUTF8;
 (...)
 // get "COL1"="VAL1" pairs, stopping at '}' or ']'
 FieldsCount := 0;
 repeat
 FU := GetJSONField(P,P);
 inc(Len,length(FU));
 if P=nil then break;

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 33 of 50

 Fields2[FieldsCount] := FU;
 Values[FieldsCount] := GetValue; // update EndOfObject
 inc(FieldsCount);
 until EndOfObject in [#0,'}',']'];
 Return(@Fields2,@Values,InlinedParams);
 (...)

And the sub-function GetValue makes use of GetJSONField also:

function GetValue: RawUTF8;
var wasString: boolean;
 res: PUTF8Char;
begin
 res := P;
 if (PInteger(res)^ and $DFDFDFDF=NULL_DF) and (res[4] in [#0,',','}',']']) then
 /// GetJSONField('null') returns '' -> check here to make a diff with '""'
 result := 'null' else begin
 // any JSON string or number or 'false'/'true' in P:
 res := GetJSONField(res,P,@wasString,@EndOfObject);
 if wasString then
 if not InlinedParams and
 (PInteger(res)^ and $00ffffff=JSON_BASE64_MAGIC) then
 // \\uFFF0base64encodedbinary -> 'X''hexaencodedbinary'''
 // if not inlined, it can be used directly in INSERT/UPDATE statements
 result := Base64MagicToBlob(res+3) else
 { escape SQL strings, cf. the official SQLite3 documentation }
 result := QuotedStr(pointer(res),'''') else
 result := res;
 end;
 Inc(Len,length(result));
end;

This code will create a string for each key/value in Fields2[] and Values[] arrays, but only once,
with the definitive value (even single quote escape and BLOB un-serialize from Base-64 encoding are
performed directly from the JSON buffer).

1.9. SWRS # DI-2.1.3
The framework shall use an innovative ORM (Object-relational
mapping) approach, based on classes RTTI (Runtime Type Information)

1.9.1. Abstract

Design Input 2.1.3 (Initial release): The framework shall use an innovative ORM (Object-relational
mapping) approach, based on classes RTTI (Runtime Type Information).

ORM, as defined in the Software Architecture Design (SAD) document, is used in the Synopse mORMot
Framework for accessing data record fields directly from Delphi Code.

Object-relational mapping (ORM, O/RM, and O/R mapping) is a programming technique for converting
data between incompatible type systems in relational databases and object-oriented programming
languages. This creates, in effect, a "virtual object database" that can be used from within the Delphi
programming language.

The published properties of classes inheriting from a new generic type named TSQLRecord are used
to define the field properties of the data. Accessing database records (for reading or update) shall be
made by using these classes properties, and some dedicated Client-side methods.

1.9.2. Implementation

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 34 of 50

Some Delphi RTTI (Runtime Type Information) objects and classes are implemented in the
SQLite3Commons.pas unit. The Synopse mORMot Framework uses this custom functions and objects
in order to access to the Delphi RTTI.

The generic functions supplied by the standard TypInfo.pas unit where not found to be easy to use:
there are some record types from one hand, which details the internal RTTI memory layout generated
by the compiler, and there are some functions on the other hand. So the framework unified both RTTI
memory layout and methods by defining some object types (i.e. not Delphi classes, but raw objects
which can map directly the RTTI memory layout via a pointer) with some methods dedicated for RTTI
handling and ORM. These object types are TClassProp, TClassType, TEnumType, TTypeInfo and
TPropInfo.

Since this ORM is the core of the framework, the code of most of these objects has been tuned for
performance: quit all of the methods have two versions in the framework, one in pure pascal code
(easy to maintain and understand, and 64 bit compatible), and one in optimized i386 assembler.

As a result, ORM code based on RTTI is fairly easy to use. See for example who a database field index is
retrieved for a TSQLRecord class:

function ClassFieldIndex(ClassType: TClass; const PropName: shortstring): integer;
var P: PPropInfo;
 CP: PClassProp;
begin
 if ClassType<>nil then
 begin
 CP := InternalClassProp(ClassType);
 if CP<>nil then
 begin
 P := @CP^.PropList;
 for result := 0 to CP^.PropCount-1 do
 if IdemPropName(P^.Name,PropName) then
 exit else
 P := P^.Next;
 end;
 end;
 result := -1;
end;

Internally, the TSQLRecord will cache some of this RTTI derived data into an internal
TSQLRecordProperties instance, global for the whole process. For instance, the method used to
retrieve a field index from its property name is the following:

function TSQLRecordProperties.FieldIndex(const PropName: shortstring): integer;
begin
 if self<>nil then
 for result := 0 to high(Fields) do
 if IdemPropName(Fields[result]^.Name,PropName) then
 exit;
 result := -1;
end;

And will be available from TSQLRecord.RecordProps.FieldIndex.

1.9.3. TSQLRecord table properties

1.9.3.1. Per-class variable needed

For our ORM, we needed a class variable to be available for each TSQLRecord class type. This variable
is used to store the properties of this class type, i.e. the database Table properties (e.g. table and

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 35 of 50

column names and types) associated with a particular TSQLRecord class, from which all our ORM
objects inherit.

The class var statement was not enough for us:

- It's not available on earlier Delphi versions, and we try to have our framework work with Delphi 6-7;
- This class var instance will be shared by all classes inheriting from the class where it is defined -

and we need ONE instance PER class type, not ONE instance for ALL

We need to find another way to implement this class variable. An unused VMT slot in the class type
description was identified, then each class definition was patched in the process memory to contain
our class variable.

1.9.3.2. Patching a running process code

The first feature we have to do is to allow on-the-fly change of the assembler code of a process.

When an executable is mapped in RAM, the memory page corresponding to the process code is
marked as Read Only, in order to avoid any security attack from the outside. Only the current process
can patch its own code.

We'll need to override a pointer value in the code memory. The following function, defined in
SynCommons.pas will handle it:

procedure PatchCodePtrUInt(Code: PPtrUInt; Value: PtrUInt);
var RestoreProtection, Ignore: DWORD;
begin
 if VirtualProtect(Code, SizeOf(Code^), PAGE_EXECUTE_READWRITE, RestoreProtection) then
 begin
 Code^ := Value;
 VirtualProtect(Code, SizeOf(Code^), RestoreProtection, Ignore);
 FlushInstructionCache(GetCurrentProcess, Code, SizeOf(Code^));
 end;
end;

The VirtualProtect low-level Windows API is called to force the corresponding memory to be
written (via the PAGE_EXECUTE_READWRITE flag), then modify the corresponding pointer value, then
the original memory page protection setting (should be PAGE_EXECUTE_READ) is restored.

According to the MSDN documentation, we'd need to flush the CPU operation cache in order to force
the modified code to be read on next access.

1.9.3.3. Per-class variable in the VMT

The VMT is the Virtual-Method Table, i.e. a Table which defines every Delphi class. In fact, every
Delphi class is defined internally by its VMT, contains a list of pointers to the class’s virtual
methods. This VMT also contains non-method values, which are class-specific information at negative
offsets:

Name Offset Description

vmtSelfPtr –76 points back to the beginning of the table

vmtIntfTable –72 TObject.GetInterfaceTable method value

vmtAutoTable –68 class’s automation table (deprecated)

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 36 of 50

vmtInitTable –64 reference-counted fields type information

vmtTypeInfo –60 the associated RTTI type information

vmtFieldTable –56 field addresses

vmtMethodTable –52 method names

vmtDynamicTable –48 dynamic methods table

vmtClassName –44 PShortString of the class name

vmtInstanceSize –40 bytes needed by one class Instance

vmtParent –36 parent VMT

We'll implement the low-level trick as detailed in this reference article available at
http://hallvards.blogspot.com/2007/05/hack17-virtual-class-variables-part-ii.html.. in order to use the
vmtAutoTable deprecated entry in the VMT. This entry was used in Delphi 2 only for implementing
Automation. Later version of Delphi (our goal) won't use it any more. But the slot is still here, ready for
being used by the framework.

We'll therefore be able to store a pointer to the TSQLRecordProperties instance corresponding to a
TSQLRecord class, which will be retrieved as such:

class function TSQLRecord.RecordProps: TSQLRecordProperties;
begin
 if Self<>nil then begin
 result := PPointer(PtrInt(Self)+vmtAutoTable)^;
 if result=nil then
 result := PropsCreate(self);
 end else
 result := nil;
end;

Since this method is called a lot of time by our ORM, there is an asm-optimized version of the pascal
code above:

class function TSQLRecord.RecordProps: TSQLRecordProperties;
asm
 or eax,eax
 jz @null
 mov edx,[eax+vmtAutoTable]
 or edx,edx
 jz PropsCreate
 mov eax,edx
@null:
end;

Most of the time, this method will be executed very quickly. In fact, the PropsCreate global function
is called only once, i.e. the first time this RecordProps method is called.

The TSQLRecordProperties instance is therefore created within this function:

function PropsCreate(aTable: TSQLRecordClass): TSQLRecordProperties;
begin // private sub function makes the code faster in most case
 if not aTable.InheritsFrom(TSQLRecord) then
 // invalid call
 result := nil else begin
 // create the properties information from RTTI
 result := TSQLRecordProperties.Create(aTable);
 // store the TSQLRecordProperties instance into AutoTable unused VMT entry

http://hallvards.blogspot.com/2007/05/hack17-virtual-class-variables-part-ii.html

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - Client Server JSON framework - Rev. 1.17 Page 37 of 50

 PatchCodePtrUInt(pointer(PtrInt(aTable)+vmtAutoTable),PtrUInt(result));
 // register to the internal garbage collection (avoid memory leak)
 GarbageCollector.Add(result);
 end;
end;

The GarbageCollector is a global TObjectList, which is used to store some global instances, living
the whole process time, just like our TSQLRecordProperties values.

A per-class TSQLRecordProperties was made therefore available for each kind of TSQLRecord class.

Even most sophisticated methods of the ORM (like TSQLRecord. GetJSONValues) make use of these
low-level object types. In most cases, the GetValue and SetValue methods of the TPropInfo
object are used to convert any field value stored inside the current TSQLRecord instance in or from
UTF-8 encoded text.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 38 of 50

22.. SSQQlliittee33 eennggiinnee

2.1. SWRS # DI-2.2.1
The SQLite3 engine shall be embedded to the framework

2.1.1. Abstract

Design Input 2.2.1 (Initial release): The SQLite3 engine shall be embedded to the framework.

The SQLite3 database engine is used in the Synopse mORMot Framework as its kernel database
engine. SQLite3 is an ACID-compliant embedded relational database management system contained in
a C programming library.

This library shall be linked statically to the Synopse mORMot Framework, and interact directly from the
Delphi application process.

The Synopse mORMot Framework shall enhance the standard SQLite3 database engine by introducing
some new features stated in the Software Architecture Design (SAD) document, related to the Client-
Server purpose or the framework - see SWRS # DI-2.1.1.

2.1.2. Implementation

It's worth noting that the Synopse SQLite3 database engine, whatever its name states, is not bound to
SQLite3 (you can use another database engine for data storage, for example we provide a
TSQLRestServerStaticInMemory class which implements a fast but limited in-memory database
engine). Therefore, the SQLite3 engine itself is not implemented in the SQLite3Commons.pas unit, but
in dedicated units.

The SQLite3 engine is accessed at two levels:

- A low-level direct access to the SQLite3 library, implemented in SynSQLite3.pas;
- A high-level access, implementing a Client-Side or Server-Side native TSQLRest descendant using

the SQLite3 library for its data persistence, in SQLite3.pas.

2.1.2.1. Low-Level access to the library

2.1.2.1.1. Compilation of the SQLite3 engine

First of all, the original source code of the library, which is retrieved from the official SQLite3 web site
in the form of the optimized Amalgamation file - see http://www.sqlite.org/amalgamation.html.. - is

http://www.sqlite.org/amalgamation.html

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 39 of 50

compiled using the free Borland C++ command-line compiler.

Here are the defines used for this compilation:
//#define SQLITE_ENABLE_FTS3
// this unit is FTS3-ready, but not compiled with it by default
// if you don't use FTS3, dont define this conditional: you'll spare 50KB of code
// this conditional is defined at compile time, in order to create sqlite3fts3.obj
#define SQLITE_DEFAULT_MEMSTATUS 0
// don't need any debug here
#define SQLITE_THREADSAFE 2
// assuming multi-thread safety is made by caller - in our framework, there is
// only one thread using the database connection at the same time, but there could
// be multiple database connection at the same time (previous was 0 could be unsafe)
#define SQLITE_OMIT_SHARED_CACHE 1
// no need of shared cache in a threadsafe calling model
#define SQLITE_OMIT_AUTOINIT 1
// sqlite3_initialize() is done in initialization section below -> no AUTOINIT
#define SQLITE_OMIT_DEPRECATED 1
// spare some code size
#define SQLITE_OMIT_TRACE 1
// we don't need sqlite3_profile() and sqlite3_trace() interfaces
#define SQLITE_OMIT_LOAD_EXTENSION 1
// we don't need extension in an embedded engine
#define SQLITE_OMIT_COMPILEOPTION_DIAGS 1
// we don't need Compilation Options Diagnostics in our embedded engine
#define SQLITE_OMIT_PROGRESS_CALLBACK 1
// we don't need sqlite3_progress_handler() API function
#define SQLITE_ENABLE_RTREE 1
// the RTREE extension is now (from v.1.8/3.7) compiled into the engine
//#define SQLITE_OMIT_LOOKASIDE
// since we use FastMM4, LookAside is not needed but seems mandatory in c source

The only code modification made to the official SQLite3 engine source code is to make winRead and
winWrite function external, which will be coded in pure pascal code, in order to implement our on-
the-fly encryption of the database file:

extern int winRead(
 sqlite3_file *id, /* File to read from */
 void *pBuf, /* Write content into this buffer */
 int amt, /* Number of bytes to read */
 sqlite3_int64 offset /* Begin reading at this offset */
);
extern int winWrite(
 sqlite3_file *id, /* File to write into */
 const void *pBuf, /* The bytes to be written */
 int amt, /* Number of bytes to write */
 sqlite3_int64 offset /* Offset into the file to begin writing at */
);

Two .obj files are created, named sqlite3.obj and sqlite3fts3.obj, using the following batch
command (named c.bat in the source code repository):

\\dev\\bcc\\bin\\bcc32 -6 -O2 -c -d -DSQLITE_ENABLE_FTS3 -u- sqlite3.c
copy sqlite3.obj sqlite3fts3.obj
\\dev\\bcc\\bin\\bcc32 -6 -O2 -c -d -u- sqlite3.c

The sqlite3.obj file won't include FTS3/FTS4, whereas sqlite3fts3.obj will include the FTS3/FTS4
module: the code size is a bit bigger. The INCLUDE_FTS3 conditional must be defined for the whole
application, to embed this module, as stated by the following code extracted from SynSQLite3.pas:

{$ifdef INCLUDE_FTS3}
{$L sqlite3fts3.obj} // link SQlite3 database engine with FTS3
{$else}
{$L sqlite3.obj} // link SQlite3 database engine
{$endif}

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 40 of 50

Some low-level functions, necessary for linking to the Borland C++ generated .obj files, are coded in
asm. These runtime functions will call Delphi equivalences, which are indeed close from the BCC32
need - see for instance _ftol() _ftoul() malloc() free() memset() memmove() atol()

_lldiv() strlen() and such. Even higher-level functions - like localtime() or qsort() - are coded
in pure Delphi code.

2.1.2.1.2. SQLite3 API access

Some types are defined in SynSQLite3.pas to map the types used by SQLite3: TSQLite3DB,
TSQLite3Statement, TSQLite3Blob, TSQLite3Value, TSQLite3FunctionContext, which are
mapped to a PtrUInt, i.e. an unsigned integer matching the current pointer size. This is the handle
type exposed by the SQLite API.

Then most C-language interface to SQLite has been converted into pure Delphi external function or
procedure calls (see http://www.sqlite.org/c3ref/intro.html.. for a complete reference). The
conversion rule was to match the API name (all sqlite3_* identifiers), then provide the most Delphi-
standard access to the parameters: for instance, we use standard Integer/Int64/PUTF8Char types, or a
var declaration instead of a C pointer.

2.1.2.2. High level access

Some Delphi classes are introduced to manage all calls and statements to C-language interface to
SQLite, mapping all sqlite3_* functions and methods to object-oriented methods.

The SynSQLite3.pas unit defines the following classes:

- ESQLException is a custom SQLite3 dedicated Exception type;
- TSQLDataBase is a simple wrapper for direct SQLite3 database manipulation;
- TSQLRequest encapsulates a SQLite3 request;
- TSQLTableDB executes a SQL statement in the local SQLite3 database engine, and get result in

memory, as JSON content;
- TSQLBlobStream is available to access to a SQLite3 BLOB Stream.

Those database access types are then used by the following Client-Server RESTful classes, to
implement SQLite3 storage for persistence of our ORM (the so called objects hibernation) in
SQLite3.pas:

- TSQLRestClientDB implements a REST client with direct access to a SQLite3 database, that is
without the Client-Server aspect of the framework;

- TSQLRestServerDB can be used to implement a REST server using SQLite3 as its storage engine.

2.2. SWRS # DI-2.2.2
The framework libraries, including all its SQLite3 related features, shall
be tested using Unitary testing

2.2.1. Abstract

Design Input 2.2.2 (Initial release): The framework libraries, including all its SQLite3 related features,
shall be tested using Unitary testing.

The Synopse mORMot Framework shall use all integrated Unitary testing features provided by a
common testing framework integrated to all Synopse products. This testing shall be defined by classes,

http://www.sqlite.org/c3ref/intro.html

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 41 of 50

in which individual published methods define the actual testing of most framework features.

All testing shall be run at once, for example before any software release, or after any modification to
the framework code, in order to avoid most regression bug.

2.2.2. Implementation

Some tests classes have been developed, which methods cover most aspect of the framework:

TTestSynopsePDF

TSynTestCase TSynTest

TTestMemoryBased

TTestSQLite3Engine

TTestFileBasedWAL TTestFileBased

TTestLowLevelTypes

TTestLowLevelCommon

TTestCryptographicRoutines

TTestCompression

TTestClientServerAccess

TTestBigTable

TTestBasicClasses

TSynTestCase classes hierarchy

Those classes are implemented in SynCommons.pas, SQLite3Commons.pas, SQLite3.pas and
SQLite3HttpServer.pas units.

2.3. SWRS # DI-2.2.3
The framework shall be able to access any external database, via
OleDB, ODBC or direct access for Oracle (OCI) or SQLite3 (for external
database files)

2.3.1. Abstract

Design Input 2.2.3 (Initial release): The framework shall be able to access any external database, via
OleDB, ODBC or direct access for Oracle (OCI) or SQLite3 (for external database files).

The following external database providers shall be made available to the framework ORM:

- Any OleDB provider;
- Any ODBC provider;
- Oracle database, via direct OCI client access;
- SQlite3 database engine.

A dedicated set of classes shall implement access, together with some advanced syntaxic sugar, like
fast late-binding, or advanced ORM mechanism, like Virtual Tables.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 42 of 50

2.3.2. SynDB classes

The Software Architecture Design (SAD) document document detailed the architecture, and main
implementation part of the database-agnostic features of the framework.

2.3.3. Faster late binding

For both our SynDB and SynBigTable units, we allow late-binding of data row values, using a variant
and direct named access of properties. It's a very convenient way of accessing result rows values.

2.3.3.1. Speed issue

But, in practice, this approach is slow. It uses the internal mechanism used for Ole Automation, here to
access column content as if column names where native object properties. There is plenty of space for
speed improvement here.

So, how does the variant type used by Ole Automation and our custom variant types (i.e.
TSynTableVariantType or TSQLDBRowVariantType) handle their properties access?

Behind the scene, the Delphi compiler calls the DispInvoke function, as defined in the Variant.pas
unit.

The default implementation of this DispInvoke is some kind of slow:

- It uses a TMultiReadExclusiveWriteSynchronizer under Delphi 6, which is a bit over-sized for its
purpose: since Delphi 7, it uses a lighter critical section;

- It makes use of WideString for string handling (not at all the better for speed), and tends to define
a lot of temporary string variables;

- For the getter method, it always makes a temporary local copy during process, which is not useful
for our classes.

2.3.3.2. Fast and furious

So we rewrite the DispInvoke function with some enhancements in mind:

- Will behave exactly the same for other kind of variants, in order to avoid any compatibility
regression, especially with Ole Automation;

- Will quick intercept our custom variant types (as registered via the global
SynRegisterCustomVariantType function), and handle those with less overhead: no critical
section nor temporary WideString allocations are used.

2.3.3.3. Implementation

Here is the resulting code, from our SynCommons unit:

procedure SynVarDispProc(Result: PVarData; const Instance: TVarData;
 CallDesc: PCallDesc; Params: Pointer); cdecl;
const DO_PROP = 1; GET_PROP = 2; SET_PROP = 4;
var i: integer;
 Value: TVarData;
 Handler: TCustomVariantType;
begin
 if Instance.VType=varByRef or varVariant then // handle By Ref variants
 SynVarDispProc(Result,PVarData(Instance.VPointer)^,CallDesc,Params) else begin
 if Result<>nil then
 VarClear(Variant(Result^));
 case Instance.VType of

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 43 of 50

 varDispatch, varDispatch or varByRef,
 varUnknown, varUnknown or varByRef, varAny:
 // process Ole Automation variants
 if Assigned(VarDispProc) then
 VarDispProc(pointer(Result),Variant(Instance),CallDesc,@Params);
 else begin
 // first we check for our own TSynInvokeableVariantType types
 if SynVariantTypes<>nil then
 for i := 0 to SynVariantTypes.Count-1 do
 with TSynInvokeableVariantType(SynVariantTypes.List[i]) do
 if VarType=TVarData(Instance).VType then
 case CallDesc^.CallType of
 GET_PROP, DO_PROP: if (Result<>nil) and (CallDesc^.ArgCount=0) then begin
 IntGet(Result^,Instance,@CallDesc^.ArgTypes[0]);
 exit;
 end;
 SET_PROP: if (Result=nil) and (CallDesc^.ArgCount=1) then begin
 ParseParamPointer(@Params,CallDesc^.ArgTypes[0],Value);
 IntSet(Instance,Value,@CallDesc^.ArgTypes[1]);
 exit;
 end;
 end;
 // here we call the default code handling custom types
 if FindCustomVariantType(Instance.VType,Handler) then
 TSynTableVariantType(Handler).DispInvoke(
 {$ifdef DELPHI6OROLDER}Result^{$else}Result{$endif},
 Instance,CallDesc,@Params)
 else raise EInvalidOp.Create('Invalid variant invoke');
 end;
 end;
 end;
end;

Our custom variant types have two new virtual protected methods, named IntGet/IntSet, which are
the getter and setter of the properties. They will to the property process, e.g. for our OleDB column
retrieval:

procedure TSQLDBRowVariantType.IntGet(var Dest: TVarData;
 const V: TVarData; Name: PAnsiChar);
var Rows: TSQLDBStatement;
begin
 Rows := TSQLDBStatement(TVarData(V).VPointer);
 if Rows=nil then
 EOleDBException.Create('Invalid SQLDBRowVariant call');
 Rows.ColumnToVariant(Rows.ColumnIndex(RawByteString(Name)),Variant(Dest));
end;

As you can see, the returned variant content is computed with the following method:

function TOleDBStatement.ColumnToVariant(Col: integer;
 var Value: Variant): TSQLDBFieldType;
const FIELDTYPE2VARTYPE: array[TSQLDBFieldType] of Word = (
 varEmpty, varNull, varInt64, varDouble, varCurrency, varDate,
 {$ifdef UNICODE}varUString{$else}varOleStr{$endif}, varString);
var C: PSQLDBColumnProperty;
 V: PColumnValue;
 P: pointer;
 Val: TVarData absolute Value;
begin
 V := GetCol(Col,C);
 if V=nil then
 result := ftNull else
 result := C^.ColumnType;
 VarClear(Value);
 Val.VType := FIELDTYPE2VARTYPE[result];
 case result of
 ftInt64, ftDouble, ftCurrency, ftDate:

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 44 of 50

 Val.VInt64 := V^.Int64; // copy 64 bit content
 ftUTF8: begin
 Val.VPointer := nil;
 if C^.ColumnValueInlined then
 P := @V^.VData else
 P := V^.VAnsiChar;
 SetString(SynUnicode(Val.VPointer),PWideChar(P),V^.Length shr 1);
 end;
 ftBlob: begin
 Val.VPointer := nil;
 if C^.ColumnValueInlined then
 P := @V^.VData else
 P := V^.VAnsiChar;
 SetString(RawByteString(Val.VPointer),PAnsiChar(P),V^.Length);
 end;
 end;
end;

This above method will create the variant content without any temporary variant or string. It will
return TEXT (ftUTF8) column as SynUnicode, i.e. into a generic WideString variant for pre-Unicode
version of Delphi, and a generic UnicodeString (=string) since Delphi 2009. By using the fastest
available native Unicode string type, you will never loose any Unicode data during char-set
conversion.

2.3.3.4. Hacking the VCL

In order to enable this speed-up, we'll need to change each call to DispInvoke into a call to our
custom SynVarDispProc function.

With Delphi 6, we can do that by using GetVariantManager /SetVariantManager functions, and
the following code:

 GetVariantManager(VarMgr);
 VarMgr.DispInvoke := @SynVarDispProc;
 SetVariantManager(VarMgr);

But since Delphi 7, the DispInvoke function is hard-coded by the compiler into the generated asm
code. If the Variants unit is used in the project, any late-binding variant process will directly call the
_DispInvoke private function of Variants.pas.

First of all, we'll have to retrieve the address of this _DispInvoke. We just can't use _DispInvoke or
DispInvoke symbol, which is not exported by the Delphi linker... But this symbol is available from
asm!

So we will first define a pseudo-function which is never called, but will be compiled to provide a
pointer to this _DispInvoke function:

procedure VariantsDispInvoke;
asm
 call Variants.@DispInvoke;
end;

Then we'll compute the corresponding address via this low-level function, the asm call opcode being
$E8, followed by the relative address of the sub-routine:

function GetAddressFromCall(AStub: Pointer): Pointer;
begin
 if AStub=nil then
 result := AStub else
 if PBYTE(AStub)^ = $E8 then begin
 Inc(PtrInt(AStub));
 Result := Pointer(PtrInt(AStub)+SizeOf(integer)+PInteger(AStub)^);

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - SQlite3 engine - Rev. 1.17 Page 45 of 50

 end else
 Result := nil;
end;

And we'll patch this address to redirect to our own function:

 RedirectCode(GetAddressFromCall(@VariantsDispInvoke),@SynVarDispProc);

The resulting low-level asm will just look like this at the call level:

TestOleDB.dpr.28: assert(Copy(Customer.AccountNumber,1,8)='AW000001');
00431124 8D45D8 lea eax,[ebp-$28]
00431127 50 push eax
00431128 6828124300 push $00431228
0043112D 8D45E8 lea eax,[ebp-$18]
00431130 50 push eax
00431131 8D45C4 lea eax,[ebp-$3c]
00431134 50 push eax
00431135 E86ED1FDFF call @DispInvoke

It will therefore call the following hacked function:

0040E2A8 E9B3410100 jmp SynVarDispProc
0040E2AD E853568B5D call +$5d8b5653
... (previous function content, never executed)

That is, it will jump (jmp) to our very own SynVarDispProc, just as expected.

In fact, the resulting code is very close to a direct ISQLDBRows.Column['AccountNumber'] call. Using
late-binding can be both fast on the execution side, and easier on the code side.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - User interface - Rev. 1.17 Page 46 of 50

33.. UUsseerr iinntteerrffaaccee

3.1. SWRS # DI-2.3
User Interface and Report generation should be integrated

3.1.1. Abstract

Design Input 2.3 (Initial release): User Interface and Report generation should be integrated.

The Synopse mORMot Framework shall provide User Interface and Report generation from code.

Such a ribbon-oriented interface shall be made available, in a per-table approach, and associated
reports.

Here is a sample of screen content, using proprietary TMS components:

User Interface generated using TMS components

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - User interface - Rev. 1.17 Page 47 of 50

And here is the same application compiled using only VCL components, available from Delphi 6 up to
XE2:

User Interface generated using VCL components

3.1.2. SynFile main Demo

The Main SynFile Demo section of the associated Software Architecture Design (SAD) document has
already detailed the architecture and the code used to produce a full featured application, including
the User Interface generation.

Please refer to these pages for sample code and general explanation about this feature of the
framework.

3.2. SWRS # DI-2.3.1.1
A Database Grid shall be made available to provide data browsing in
the Client Application - it shall handle easy browsing, by column
resizing and sorting, on the fly customization of the cell content

3.2.1. Abstract

Design Input 2.3.1 (Initial release): An User Interface, with buttons and toolbars shall be easily being
created from the code, with no RAD needed, using RTTI and data auto-description.

A Database Grid shall be made available to provide data browsing in the Client Application - it shall
handle easy browsing, by column resizing and sorting, on the fly customization of the cell content.

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - User interface - Rev. 1.17 Page 48 of 50

3.2.2. Implementation

A standard TDrawGrid can be associated to a TSQLTable instance by using a TSQLTableToGrid object,
as defined in the SQLite3UI.pas:

- Just call TSQLTableToGrid.Create(Grid,Table) to initiate the association;
- The Table will be released when no longer necessary;
- Any former association by TSQLTableToGrid.Create() will be overridden;
- Handle Unicode, auto column size, field sort, incremental key lookup, optional hide ID;
- Ctrl + click on a cell to display its full Unicode content.

For instance, here is how the SQLite3ToolBar.pas unit creates a grid for every TSQLRecord class it
refers to:

constructor TSQLLister.Create(aOwner: TComponent; aClient: TSQLRestClientURI;
 (...)
 fTableToGrid := TSQLTableToGrid.From(fGrid);
 if fTableToGrid=nil then begin
 // this Grid has no associated TSQLTableToGrid -> create default one
 if fClient.InheritsFrom(TSQLRestClientURI) then
 C := TSQLRestClientURI(fClient) else
 C := nil;
 fTableToGrid := TSQLTableToGrid.Create(fGrid,aTable,C);
 if aIDColumnHide then
 fTableToGrid.IDColumnHide;
 end;
 fTableToGrid.OnRightClickCell := OnRightClickCell;
 TableToGrid.OnValueText := aOnValueText;
 fGrid.DefaultDrawing := false; // we force full redraw
 TableToGrid.OnDrawCellBackground := OnDrawCellBackground;
 TableToGrid.OnSelectCell := OnSelectCell;
 (...)

All the process will be done in an automated manner, using the methods of the TDrawGrid
component.

The current implementation is very fast, since the data is taken directly from the TSQLTable content.
A grid with more than 200,000 rows is displayed with no delay. All content is converted into pure text,
according to the RTTI information associated with the TSQLTable columns. If it was created as a
TSQLTableJSON, from an ORM call of the framework, it will contain the RTTI information for each
column. For instance, time and date will be displayed with the current internationalization settings,
from either ISO 8601 encoded text (for TDateTime published property) or our optimized Int64 format
(for TTimeLog / TModTime / TCreateTime published property).

3.3. SWRS # DI-2.3.1.2
Toolbars shall be able to be created from code, using RTTI and
enumerations types for defining the action

3.3.1. Abstract

Toolbars shall be able to be created from code, using RTTI and enumerations types for defining the
action.

3.3.2. Implementation

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - User interface - Rev. 1.17 Page 49 of 50

3.3.2.1. Rendering

The current implementation of the framework User Interface generation handles two kind of
rendering:

- Native VCL components;
- Proprietary TMS components.

You can select which set of components are used, by defining - globally to your project (i.e. in the
Project/Options/Conditionals menu) - the USETMSPACK conditional. If it is not set (which is by default),
it will use VCL components.

3.3.2.2. Ribbon-like toolbars

As stated by the Main SynFile Demo section of the associated Software Architecture Design (SAD)
document, ribbon-like toolbars can be generated by using the TSQLRibbon class, as defined in
SQLite3ToolBar.pas.

This class will use one TSQLRibbonTab instance per TSQLRecord class type it handles, displayed on its
own ribbon page, with an associated TDrawGrid instance and a TGDIPages report, via a corresponding
TSQLLister instance. Parameters provided from code to the TSQLRibbon. Create method can
customize the toolbar content on purpose. Actions will be provided as an enumeration type, and
button captions will be extracted by Un Camel Casing of each enumerated value, using RTTI.

3.3.2.3. Stand-alone toolbars

A TSQLCustomToolBar object can be used to create some generic toolbars, with just some icons and
actions on screen, with no reference to any associated TSQLRecord class. See for instance this sample
code:

procedure TMainLogView.FormCreate(Sender: TObject);
begin
 FToolBar.Init(self,TypeInfo(TLogViewAction),ActionClick,ImageList,'');
 FToolBar.AddToolBar('Test')
end;

The above lines will create a panel on the owner form, with a toolbar containing one button per each
TLogViewAction element. Icons will be taken from the supplied ImageList component, and the
ActionClick event handler will be called when a button is pressed.

3.4. SWRS # DI-2.3.1.3
Internationalization (i18n) of the whole User Interface shall be made
available by defined some external text files: Delphi resourcestring
shall be translatable on the fly, custom window dialogs automaticaly
translated before their display, and User Interface generated from RTTI
should be included in this i18n mechanism

3.4.1. Abstract

Internationalization (i18n) of the whole User Interface shall be made available by defined some
external text files: Delphi resourcestring shall be translatable on the fly, custom window dialogs
automaticaly translated before their display, and User Interface generated from RTTI should be

Synopse mORMot Framework
Software Design Document 1.17
Date: September 9, 2012

 SDD - User interface - Rev. 1.17 Page 50 of 50

included in this i18n mechanism.

3.4.2. Implementation

The SQLite3i18n.pas unit is able to handle both Internationalization (i18n) and Localization (L10n).

The TLanguageFile class is able to retrieve a custom list of text, and use it for all resourcestring
and screen captions. The global _() function, or the Translate method of the TLanguageFile class
can be used to translate any English text into the corresponding language.

The generic string type is used when some text is to be displayed on screen. Dedicated U2S and S2U
functions, or even better the UTF8ToString and StringToUTF8 methods of a TLanguageFile
instance can be used for proper conversion.

Localization is performed via some dedicated methods of the TLanguageFile class, like DateToText,
DateTimeToText, TimeToText.

3.5. SWRS # DI-2.3.2
A reporting feature, with full preview and export as PDF or TXT files,
shall be integrated

3.5.1. Abstract

Design Input 2.3.2 (Initial release): A reporting feature, with full preview and export as PDF or TXT files,
shall be integrated.

The Synopse mORMot Framework shall provide a reporting feature, which could be used stand-alone,
or linked to its database mechanism. Reports shall not be created using a RAD approach (e.g. defining
bands and fields with the mouse on the IDE), but shall be defined from code, by using some dedicated
methods, adding text, tables or pictures to the report. Therefore, any kind of report shall be
generated.

This reports shall be previewed on screen, and exported as PDF or TXT on request.

3.5.2. Implementation

The SQLite3Pages.pas unit implements a reporting component named TGDIPages, with full preview
and txt/pdf export.

Anti-aliased drawing is using the SynGdiPlus.pas unit, and the TGDIPlus. DrawAntiAliased
method.

The pdf export itself is implemented via the SynPdf.pas unit, via a TPdfDocument component: every
page content (in fact, a TMetaFile instance) is rendered via the TPdfCanvas. RenderMetaFile
method.

