
VCL components for advanced communications

DEVELOPER’S GUIDE
A “how-to” guide for getting the most from Async Professional

Developer’s Guide

Async Professional

Async Professional


F

©2001,TurboPower Software Company

For over fifteen years you’ve depended on TurboPower to provide the best

tools and libraries for your development tasks. Now try Sleuth QA Suite 3

and Orpheus 4—two of TurboPower’s best selling products—risk free.

Both are fully compatible with Borland Delphi and C++Builder, and are

backed with our expert support and 60-day money back guarantee.

S L E U T H Q A S U I T E 3™

Want to make your code the best it can be?

More than just a debugger and profiler, Sleuth QA

Suite 3 is a full-cycle debug/optimization/test

solution that helps you meet quality assurance

requirements from coding through product

deployment and beyond. No expensive add-ons

are required—everything you need is in one box.

O R P H E U S 4 ™

Make the first impression count with new Orpheus 4, the award-winning

user interface construction kit from TurboPower Software Company.

Your customers will feel comfortable the minute your application starts,

resulting in them spending less time learning how to use your program and

more time getting to know what makes it special.

D E V E LO P, D E B U G , O P T I M I Z E

F R O M S TA R T T O F I N I S H , T U R B O P O W E R

H E L P S Y O U B U I L D Y O U R B E S T

Try the full range of
TurboPower products.

Download free Trial-Run Editions
from our Web site.

www.turbopower.com

The TurboPower family of tools—
Winners of 6 Delphi Informant Readers’ Choice Awards
for 2001! Company of the Year in 2000 and 2001.

Async Professional 4 requires Microsoft Windows (9x, Me, NT, 2000 or XP) and Borland Delphi 3 and above, or C++Builder 3 and above


TM

TM

Async Professional 4
Developer’s Guide

TurboPower Software Company
Colorado Springs, CO

www.turbopower.com

© 1998-2001 TurboPower Software Company. All rights reserved.

First Edition January 1998
Second Edition November 1999

Third Edition August 2001

 ™

License Agreement

This software and accompanying documentation are protected by United States copyright law and also by International
Treaty provisions. Any use of this software in violation of copyright law or the terms of this agreement will be prosecuted to
the best of our ability.

Copyright © 1998-2001 by TurboPower Software Company, all rights reserved.

TurboPower Software Company authorizes you to make archival copies of this software for the sole purpose of back-up and
protecting your investment from loss. Under no circumstances may you copy this software or documentation for the
purposes of distribution to others. Under no conditions may you remove the copyright notices made part of the software or
documentation.

You may distribute, without runtime fees or further licenses, your own compiled programs based on any of the source code
of Async Professional. You may not distribute any of the Async Professional source code, compiled units, or compiled
example programs without written permission from TurboPower Software Company.

Note that the previous restrictions do not prohibit you from distributing your own source code, units, or components that
depend upon Async Professional. However, others who receive your source code, units, or components need to purchase
their own copies of Async Professional in order to compile the source code or to write programs that use your units or
components.

The supplied software may be used by one person on as many computer systems as that person uses. Group programming
projects making use of this software must purchase a copy of the software and documentation for each member of the
group. Contact TurboPower Software Company for volume discounts and site licensing agreements.

This software and accompanying documentation is deemed to be “commercial software” and “commercial computer
software documentation,” respectively, pursuant to DFAR Section 227.7202 and FAR 12.212, as applicable. Any use,
modification, reproduction, release, performance, display or disclosure of the Software by the US Government or any of its
agencies shall be governed solely by the terms of this agreement and shall be prohibited except to the extent expressly
permitted by the terms of this agreement. TurboPower Software Company, 15 North Nevada, Colorado Springs, CO
80903-1708.

With respect to the physical media and documentation provided with Async Professional, TurboPower Software Company
warrants the same to be free of defects in materials and workmanship for a period of 60 days from the date of receipt. If you
notify us of such a defect within the warranty period, TurboPower Software Company will replace the defective media or
documentation at no cost to you.

TurboPower Software Company warrants that the software will function as described in this documentation for a period of
60 days from receipt. If you encounter a bug or deficiency, we will require a problem report detailed enough to allow us to
find and fix the problem. If you properly notify us of such a software problem within the warranty period, TurboPower
Software Company will update the defective software at no cost to you.

TurboPower Software Company further warrants that the purchaser will remain fully satisfied with the product for a period
of 60 days from receipt. If you are dissatisfied for any reason, and TurboPower Software Company cannot correct the
problem, contact the party from whom the software was purchased for a return authorization. If you purchased the product
directly from TurboPower Software Company, we will refund the full purchase price of the software (not including shipping
costs) upon receipt of the original program media and documentation in undamaged condition. TurboPower Software
Company honors returns from authorized dealers, but cannot offer refunds directly to anyone who did not purchase a
product directly from us.

TURBOPOWER SOFTWARE COMPANY DOES NOT ASSUME ANY LIABILITY FOR THE USE OF ASYNC
PROFESSIONAL BEYOND THE ORIGINAL PURCHASE PRICE OF THE SOFTWARE. IN NO EVENT WILL
TURBOPOWER SOFTWARE COMPANY BE LIABLE TO YOU FOR ADDITIONAL DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF OR INABILITY TO USE THESE PROGRAMS, EVEN IF TURBOPOWER SOFTWARE COMPANY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

By using this software, you agree to the terms of this section and to any additional licensing terms contained in the
DEPLOY.HLP file. If you do not agree, you should immediately return the entire Async Professional package for a refund.

All TurboPower product names are trademarks or registered trademarks of TurboPower Software Company. Other brand
and product names are trademarks or registered trademarks of their respective holders.

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Table of Contents

Chapter 1: Introduction .1
System Requirements .2
Installation .3
Technical Support .7

Chapter 2: Communications Basics .9
Communications Overview .10
Data In/Out .11
Terminals and Emulators .12
Modems and TAPI .13
Protocols .14
Faxing .15

Chapter 3: Advanced Communication Principles 17
Basics of Asynchronous Communication .18
Serial Communication Under Windows .37
Event Management .41
Device Independence .42

Chapter 4: Overviews and Troubleshooting Sessions45
Overview: Choosing a Modem .46
Overview: Using the Fax Server Components .50
Overview: TAPI Voice Support .55
Overview: Debugging Windows Communications Programs and
Communications Hardware .58
Troubleshooting a Connection Session .67
Troubleshooting a File Transfer .70
Troubleshooting a Fax Session .71

Chapter 5: Tutorials .73
Setting Up a Comport .74
Sending Characters .76
Receiving Characters .78
Detecting a Specific String in the Data Stream .80
Detecting a Packet .83
Selecting and Configuring a Modem .85
LibModem .87
Configuring a TAPI Device .91
Dialing .94
1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Monitoring the Progress of a Dial Attempt .96
Terminating a Connection .98
Sending Files .100
Receiving Files .104
EXZRECV.DPR .105
Sending and Receiving Faxes on the Same Line .106
Inserting a Delay .108
Displaying Status Lights .110
Detecting Line State Changes .112
Flow Control .116
Dialing with RAS .118
Setting up a Winsock Port .120
Logging in to an FTP Server .122
Changing the Current Working Directory of an FTP Server .124
Displaying the Contents of a Directory on an FTP Server .126
Downloading a File from an FTP Server .128
Paging with Winsock .130
Paging with Modems .132
Sending an SMS Message .134
Managing SMS Messages .136
Converting a Document to Fax Format .140
Configuring a Device for Faxing .142
Sending Faxes to One Recipient .143
Sending Faxes to Different Recipients .147
Receiving Faxes .150
Converting a Fax to Another Format .153
Viewing a Fax .155
Printing a Fax .157
Installing the Fax Printer Driver Programmatically .159
Intercepting a Fax Printer Print Job .161
Faxing a Document from your Application .163
Creating a Fax Client .166
Setting Up a Fax Server .169
Sending and Receiving Faxes with TApdFaxServer .171
Detecting DTMF .174
Recording a WAVE File .176
Playing WAVE Files .178
Installing SAPI4 .180
Setting up Speech Synthesis .182
Selecting Speech Synthesis Voices .183
Setting up Speech Recognition .185
Selecting a Speech Recognition Engine .187

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Using the Speech Recognition VU Meter . 189
Using Speech Synthesis and Recognition Over a Phone . 191
Asking the User for Information Over a Voice Connection . 194
RS-485 Support . 196
Setting Up a Terminal . 198
Setting Up a Terminal Emulator . 200

Chapter 6: Demonstration Programs . 203
Terminal Demo . 204
Modem Database Demo . 208
Send Fax Demo . 213
Receive Fax Demo . 216
Fax Converter Demo . 218
Fax Viewer Demo . 222
Fax Monitor and Fax Server Demo . 227
Fax Server Demo . 229
RAS Dialer Demo . 230
FTP Client Demo . 234
Paging Demo . 239

Glossary . 242

Index . i
1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 1: Introduction

Whether you are new to Async Professional or one of our many long-time customers, we
would like to express our sincere appreciation for the confidence you have placed in us by
choosing APRO for your serial communications needs.

Since the first version of APRO back in 1991, TurboPower has invested several thousand
man-hours designing, developing, testing, refining, and supporting it. We are very proud of
the awards APRO has won, and the good reviews it has received.

Async Professional 4 builds on this award-winning foundation to add the features you need
for computing beyond the desktop. With APRO your programs can send alphanumeric
pages to anyone in the world, even across the Internet. You can retrieve files from FTP
servers anywhere. You can even add Dial-Up Networking capabilities to your programs with
easy-to-use new VCL controls. We also added an advanced terminal control, automated
scripting for complex communications tasks, and even controls for building multi-user fax
server solutions. We think you will like the new features we added, because many of the
ideas for them came from customers like you!

In fact, comments received from earlier users of APRO served as the genesis for the manual
you are reading now. We are very pleased to provide this Developer’s Guide as a complement
to the comprehensive information in our Reference Guide.

After the Chapter 1 introductory material, Chapter 2 of this guide gives a brief overview of
communications concepts, and describes how the major APRO components fit into the
overall communications picture. Chapter 3 provides a more advanced discussion of some of
the principles of serial communications and the general issues of serial communications
under Windows. Chapter 4 includes overviews and trouble-shooting guides for some of the
more problematic areas of serial communication. Chapter 5 has almost 50 tutorial topics,
describing how to do most common tasks. Chapter 6 is a guide to the larger demonstration
programs we include with APRO.

We wrote the Developer’s Guide to give you a head start using the Async Professional
components. We also hope you will use it to explore some of the library’s new areas and
functionality. With the Developer’s Guide in hand, we expect that you will discover new and
exciting ways to implement APRO technology in many of your creations.

As many long-time customers can tell you, TurboPower Software Company is genuinely
committed to your success using our products. We welcome all your comments,
suggestions, and even constructive criticisms. We continue to strive to fully meet your
expectations. Please let us know how we’re doing. And thank you again for choosing Async
Professional.
 1

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
System Requirements
To use Async Professional, you must have the following hardware and software:

1. A computer capable of running MicroSoft Windows 95/98/ME or Windows NT/2000.
A minimum of 16MB of RAM is recommended.

2. Delphi 3 or later or C++Builder 3 or later.

3. A hard disk with at least 50MB of free space is strongly recommended. To install all
Async Professional files and compile the example programs requires about 50MB of
free disk space for all supported compilers.

4. To rebuild the Async Professional fax printer drivers, you will need Delphi 1.02, and
Microsoft Visual C++ 4.0 or greater.
 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Installation
Async Professional can be installed directly from the CD-ROM (or diskettes) or you can
copy the complete set of installation files to your hard disk and run the installation from
there. Before installing the product, please scan through the README.HLP file to find any
late news that may affect installation.

The setup program
Insert the TurboPower Product Suite CD and follow the instructions presented by the
SETUP program.

If you are installing from diskettes, run SETUP. EXE to start the installation process. Since
SETUP is a Windows application, you must start Windows first. From the taskbar select
Start and then Run and type X:\SETUP. Replace X:\ with the appropriate drive letter or the
name of a directory if you copied the distribution files to your hard disk.

SETUP installs Async Professional in the C:\APRO directory by default. You can specify a
different directory, if desired.

SETUP creates a new program group named Async Professional (you can specify a different
name, if desired) and puts the following program icons in it:

Async Professional help
The Async Professional help file.

Last minute news about Async Professional
A text file that describes changes to the documentation and new features added after the
manual was printed. Please read this file before using Async Professional.

Installing for multiple compiler versions
Async Professional supports Borland Delphi 3.0 or greater and Borland C++Builder 3.0 or
greater. However, the compiled file format (DCU format) is different for each Delphi version
and the header files (HPP format) are different for each version of C++Builder. Since the
complete source code for Async Professional is included, it is a simple matter to recompile
the library when switching among versions. You can have Delphi automatically do this for
you by deleting all the Async Professional DCU files when you switch environments. The
only files that differ among the Delphi environments are the compiled DCU files.

Alternatively, if you switch versions frequently, it might be more convenient to keep separate
copies of Async Professional installed for each Delphi environment. There is no option in
the SETUP program to do this automatically, but you can simply run the SETUP program as
Installation 3

1

1

4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
many times as necessary and specify different directories each time. If you install multiple
copies of Async Professional, make sure to point each Delphi version to its unique directory
when adding the components to the palette.

If you are installing support for multiple versions of C++Builder, the headers for the highest
selected C++Builder version will be placed in the APRO source folder, and the headers for
other selected C++Builder versions will be placed in subdirectories. For example, if you
choose to install for C++Builder 3 and 4, the headers for C++Builder 3 will be placed in the
APRO\HPP3 folder.

If you need to make changes to any of the included resource files, be aware that the *.RC files
should be compiled to *.R16 (for 16-bit), and to *.R32 (for 32-bit), rather than to the default
*.RES. This prevents naming conflicts. The 16-bit resources are only required when
rebuilding the Windows 95/98/ME printer driver.

Component installation
Installing Packages
To avoid version conflicts with applications using different versions of the Async
Professional packages, each version of APRO comes with packages using slightly different
names. The APRO packages have the following form:

ANnn_YVv.DPL (or .BPL for Delphi 4 and 5 and C++Builder 3 and 4)

Nnn is the version number of APRO. Y indicates whether the package is a run-time package
(R) or a design-time package (D). Vv is the version of VCL supported. For example, the
run-time package name for APRO 4.00 for Delphi 4 is A400_R40.DPL.

Async Professional help and the design-time package are automatically installed into the
VCL if Async Professional is installed using the setup program. If you are upgrading by
using a patch or the installation program simply failed to handle this properly, you will need
to use the “Install Packages” menu option to install the APRO design-time package:
(APNnn_DVv.DPL, or APNnn_DVv.BPL, where Nnn is the APRO version number and Vv
is the VCL version number.

In order for the run-time packages to be “seen” by the VCL (and the design-time package)
you need to copy them to the Windows system directory (\System for Win95/98/ME or
\System32 for NT/2000) or add the Async Professional directory to your path. Another
option is to copy the APRO DPL or BPL files to the Delphi\BIN directory.

Be sure to alter the library path so that it includes the path to the APRO source files
(Tools | Environment Options—Library Page) or add the APRO path to your system Path
environment. This allows the compiler to find the APRO source files when required.

The component palette is updated with three tabs: “APro”, “APro Fax”, and “APro TAPI.”
 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The “APro” tab provides access to the standard comport, advanced terminal, and protocol
components:

The “APro Fax” tab provides access to the fax components:

The “APro TAPI” tab provides access to the TAPI components:

These same icons are used throughout the Developer’s Guide and Reference Guide when
referring to the Async Professional components.

When you do the component installation, C++Builder automatically generates C++ header
files for each source unit in the Async Professional library. The header file name is the unit
name plus the extension HPP.

Installing integrated help
The Async Professional help system is typically installed into Delphi and C++Builder by the
SETUP program, but steps for manual installation are provided if the need arises.

Installing for Delphi 4 and greater and C++Builder
Use the Help | Customize options from the IDE to install APRO32.HLP. Please refer to your
compiler’s documentation for details.

Installing for Delphi 3.0
To manually install Async Professional help into Delphi 3, perform the following steps to
install APRO32.HLP:

Edit the Delphi3.cnt file (in the Delphi Help directory) and add the following line to the
“index” section:

 :Index Async Professional Reference =Apro32.hlp
Installation 5

1

1

6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The first time you attempt to access Async Professional help, Delphi/Windows won't be able
to locate the help file and will ask if you want to find the file yourself. Answer yes to this
question and browse for the Async Professional help file (APRO32.HLP), which should be
in the \ASYNCPRO directory. This step will only be required the first time you access Async
Professional’s help.
 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Technical Support
The best way to get an answer to your technical support questions is to post it in the Async
Professional newsgroup on our news server (news.turbopower.com). Many of our
customers find the newsgroups a valuable resource where they can get answers to questions,
share ideas, and learn from others’ experiences.

To get the most from the newsgroups, we recommend that you use dedicated newsreader
software. You’ll find a link to download a free newsreader program on our web site at
www.turbopower.com/tpslive.

Newsgroups are public, so please do not post your product serial number, 16-character
product unlocking code or any other private numbers (such as credit card numbers) in
your messages.

The TurboPower KnowledgeBase is another excellent support option. It has hundreds of
articles about TurboPower products accessible through an easy-to-use search engine
(www.turbopower.com/search). The KnowledgeBase is open 24 hours a day, 7 days a week.
So you will have another way to find answers to your questions even when we’re not
available.

Other support options are described in the product support brochure included with Async
Professional. You can also read about support options at www.turbopower.com/support.
Technical Support 7

1

1

8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 2: Communications Basics

Communications is a very difficult field of programming. Several factors contribute to this
perception. Firstly, many areas of communications programming lack sufficiently thorough
(and understandable) documentation. Secondly, the typical communications program is
expected to interface with a variety of hardware, software and drivers (all which may have
slightly different behaviors). Additionally, the many issues that are dealt with during the
course of programming a communications application are often very difficult to
troubleshoot.

One of the biggest goals of Async Professional is to insulate you from these difficulties. It’s
very possible for an average programmer to work some communications functionality into
an application with a minimum of communications knowledge by using a high level library
like Async Professional. Obviously, there is a certain amount of required knowledge to
tackle something in a difficult field such as communications—but we hope to give you a
good head start in any case.

This chapter introduces some of the communications fundamentals in a fairly basic way and
describes how the major APRO components fit into the picture. If you have been
programming in the field of communications for some time, you may be tempted to skip
this chapter—but there’s always the possibility that you may pick up a few tips here and
there regarding how the different Async Professional components fit into the overall
equation. If you have a need for some more detailed information, please refer to “Chapter 3:
Advanced Communication Principles” on page 17.
 9

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Communications Overview
As mentioned in the previous section, communications is a tough field. Many people
consider it a “black art,” and that designation is very well deserved in many circumstances.
Programming for environments such as Windows simplifies things in some ways, and
makes things much more frustrating in other ways.

Some of the advantages of programming in Windows include the fact that you don’t need to
know things such as the intricacies of UART operation or the way bytes are framed by
start/stop bits. It’s now possible to save study of those topics for a rainy day. Not only is
knowledge of what’s going on at that level unnecessary these days—but it’s often the case
that the operating system actually prevents you from accessing the hardware directly.

The next few sections present communications basics in what is hoped to be a fairly simple
manner. This chapter is by no means intended to be a comprehensive guide to data
communications; it’s merely intended to give you a base knowledge so you can start to
understand the components available in Async Professional, and their purpose in life. Be
sure to refer to the applicable sections of the Reference Guide to get more information about
the various APRO components.
0 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Data In/Out
Every communications program has at least one thing in common: the fact that the program
“communicates” with other programs or devices. This means that data flows into or out of
the application in some way. In most applications, data flows in both directions, but it’s
certainly possible for an application to only receive or send data. The data can be binary,
text, or whatever—it’s always treated as a stream of bytes by the low-level hardware and
drivers. The method of communication may differ slightly—it could be though an RS-232
serial port, an RS-485 port, a parallel port, or network communications card. The actual
implementation of these methods differ, but the net result that bytes flow in and/or out of
the program remains the same.

The TApdComPort and TApdWinsockPort are low-level components designed to handle
the actual sending and receiving of data. The TApdComPort is designed to interface with a
standard RS-232 or RS-485 serial port via the Windows communications drivers. The
TApdWinsockPort is derived from the TApdComPort, retains all of its functionality, and
adds the ability to communicate over a network connection using Winsock services.

These low-level components provide an interface to the rest of the world for your program.
You’ll find that most other components in Async Professional rely on these components in
some way. An additional low-level component, the TApdDataPacket component, is
designed to help you identify and receive specific data that you expect to come in through
the comport. This component is very helpful when you are looking for specific data in the
incoming data stream.
Data In/Out 11

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Terminals and Emulators
Terminals display data, emulators decide what the data should be. They are always used
together in Async Professional; without an emulator, a terminal would have nothing to
display, without a terminal, an emulator would have nowhere to display the data it had
interpreted.

An emulator has two jobs. It must, first and foremost, interpret the data coming through a
serial communications device from a remote host computer. This incoming data will
contain text to be displayed on the terminal and it will also contain terminal control
sequences. These are sets of characters which, taken as a whole, denote commands for the
terminal. Examples of such commands are to scroll the text on the terminal display, to
switch from one character set to another, to move or position the cursor, and so on. The
emulator thus has to separate out the incoming data stream into terminal control sequences
(e.g., “move the cursor to row 1 column 1”) and the text that is to be displayed at the cursor
(e.g., “Hello, world”).

The second job for the emulator is to convert PC keystrokes into their terminal equivalents.
With many terminals, pressing some keys on the keyboard results in a sequence of
characters being sent to the host computer. The host computer can identify this sequence
and know which key was pressed. Obviously, the alphanumeric keys would generate the
corresponding character, and there would be no conversion required.

Hence, it is the emulator that provides the characteristics of a given terminal. Async
Professional comes with two emulator components: the teletype emulator,
TAdTTYEmulator, and the VT100 emulator, TAdVT100Emulator.

The terminal, on the other hand, has it easy. It merely displays the text that the emulator
provides. The TAdTerminal component works with any emulator component: you can link
them together either at design time or at run time. If you choose not to use an emulator
component, the TAdTerminal will use an internal, hidden, TAdTTYEmulator component
anyway. This means that you can get simple terminal functionality just by dropping a
TAdTerminal onto your form, but, if you wish a more elaborate emulation, you can drop an
emulator component onto the form as well and link them together.
2 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Modems and TAPI
Modems are hardware devices that make it possible to connect to a phone line via a standard
serial port. Modem stands for MOdulator/DEModulator. They modulate the outgoing serial
data so it can be properly transmitted along the phone line, and demodulate the incoming
data, so it can be received by the serial port. Variations on this theme include ISDN
modems, cable modems, and so on. Modems are somewhat difficult to work with in a
general manner since there are several different standards used by modem manufacturers
that define the communication between an application and the modem, and your
application must be able to adapt to those differences.

Async Professional has several components that are designed to simplify the process of
adapting to and communicating with different modems. The base modem component is
TApdSModem. It combines the most important modem functions into a simple, easy-to-use
component.

TAPI, which stands for Telephony Application Programming Interface, is an attempt by
Microsoft to simplify the process of communication with the modem. It is a standardized
API with which the application can interface—making it simple (in theory) to communicate
with many different modems in a standardized way. Under TAPI, a great deal of the burden
(and also control) is removed from the application developer in favor of placing the burden
on the designers of the operating system and the manufacturers of the modems. This point
has good and bad sides—it’s great if everything works as planned, but can be very
frustrating if things don’t work well.

APRO’s TAPI support is contained within the TApdTapiDevice component.
Modems and TAPI 13

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Protocols
Protocols come in many flavors. The word protocol simply refers to a standard way of doing
something. A login/ logout process on a BBS can actually be considered a protocol. A simple
send string/receive string protocol, such as the one used to check Internet mail (POP3) is
best handled using the TApdDataPacket component. Other protocols, such as the ones used
to transfer binary data, are a bit more complicated and require the use of complex state
machines to track how the process is progressing.

Async Professional provides the TApdProtocol component, and its associated status and
logging components, to assist in these complex situations. These components greatly
simplify the process of sending and receiving binary and ASCII text files. In fact, all you have
to do is set a few properties and call a method to get things going in many cases.
4 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Faxing
Sending a fax essentially consists of binary transmission of data over the phone lines, using a
specialized transfer protocol. In addition to sending and receiving fax images, there are
other issues that need to be handled as part of the overall faxing process, such as document
conversion and viewing.

Only certain modems are capable of sending or receiving fax images. These modems are
classified by the language used to set their fax features and perform fax functions. Async
Professional supports Class 1, Class 1.0, Class 2 and Class 2.0 fax modems.

Async Professional contains several stand-alone components that help you deal with the
details of sending and receiving faxes: TApdSendFax and TApdReceiveFax components, the
TApdFaxConverter and TApdFaxUnpacker components, and the TApdFaxViewer and
TApdFaxPrinter components.

APRO also includes three components that make it easy to create a distributed fax server
system: TApdFaxServer, TApdFaxServerManager and TApdFaxClient.
Faxing 15

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
6 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 3: Advanced Communication Principles

This chapter provides a more advanced discussion of some the principles of serial
communications and the general issues of serial communication under Windows. An Async
Professional user is typically insulated from many of these details—both by Async
Professional’s encapsulation of the various communication APIs and by the layers of drivers
that exist in Windows. With this in mind, it is very possible to write a successful Async
Professional program without reading (or fully understanding) this chapter.

This chapter is mainly intended for users who want (or need) a more detailed understanding
of some of the low-level processes that may be affecting their application. This chapter is not
intended to be a comprehensive guide to all aspects of serial communication.
 17

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Basics of Asynchronous Communication
After presenting some basic concepts, this discussion continues into some of the lower-level
details of serial communications (starting with a detailed discussion of the UART chip).
Generally, you do not need such detailed knowledge to use Async Professional.

The broadest definition of serial communications includes anything that transmits or
receives data in a serial fashion, where one bit follows another in a single stream over one
wire. In parallel communications, by contrast, many bits are sent in parallel over many
wires. Asynchronous serial communications simply means that the data stream includes
start and stop bits, bits that mark the beginning and end of each character in the data
stream. This is in contrast to synchronous communications where no start or stop bits are
provided and the two ends of the link rely on synchronized clocks to know where each
character starts and stops.

In the PC world, when people speak of serial communications they are invariably talking
about the communications facility provided by the serial ports (or com ports) at the back of
a PC. To these ports you can attach a wide variety of peripheral devices. You can attach
modems to call other computers. You can attach printers and plotters. You can attach input
devices such as data acquisition equipment and laboratory instruments. In fact, you can
attach and communicate with anything that adheres to the same serial communications
standard as the serial port.

Given the wide variety of serial peripherals that someone might be using and the
corresponding variety of applications, it’s sometimes hard to find a general purpose term for
what you have attached to your serial port. Should you call it a modem? printer? instrument?
remote device? attached device? that thing at the other end of the line? When the term is too
general it can be hard to understand. When the term is too specific it might not be clear how
the point relates to other cases. So, in this manual the appropriate terms are used as they are
called for. The manual uses the term “device” or “remote device” or just “remote” when the
kind of device is not really important. When the point relates to a specific device such as a
modem, the more specific term is used.

Information presented throughout this manual refers to something called a UART, short for
Universal Asynchronous Receiver/Transmitter. This is the chip within your PC that handles
the low-level details of receiving and transmitting data. You don’t really need to know any
more beyond that. If you are interested in learning more about the UART, read “Universal
Asynchronous Receiver/Transmitter (UART)” later in this section.
8 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Line parameters
Because serial communications are somewhat standardized, you don’t need to know the
lowest level details such as line voltages, pin names, and so forth. However, you do need to
know about line parameters—baud rate, parity, data bits and stop bits—which specify the
transfer rate and format of the data on the serial line. Usually, the line parameters are
expressed like this:

9600,N,8,1

This describes a communications link operating at 9600 baud, no parity bit, eight data bits,
and one stop bit. Both ends of the link must be using the same line parameters before any
communication can take place.

You specify line parameters in your Async Professional application whenever you open a
serial port. In some cases, you might not have any leeway at all—the device you want to
communicate with might force particular line parameters upon you. More likely, though,
you’ll need to choose appropriate line parameters for your PC and the device attached to
your serial port. Here are brief definitions of these line parameters and some guidelines for
choosing appropriate values.

Baud rate
Baud rate is commonly used to mean bit rate—the number of bits transmitted per second.
This is technically incorrect. Baud rate actually means the number of events per second in a
communications line. Since an event can contain information about more than one bit, as is
the case with high-speed modems, baud rate could be quite different than bit rate. At the
serial port itself (where Async Professional usually concerns itself) each event is a single bit,
so equating baud rate and bit rate is accurate.

When given a choice, you should generally select a baud rate as high as possible to give you
the highest possible throughput. Understand, however, that there are very likely other limits
in your application or environment that might limit your throughput. The speed of your PC,
the type of UART, the quality of the Windows communications driver, and the behavior of
concurrently running tasks all affect the highest achievable communications speed.

Generally, any x386 machine should be able to achieve 9600 baud. Faster x486 and Pentium
machines can achieve higher speeds, in some cases up to the limit of the Window
communications driver, 115.2K baud. Due to the architecture of Windows, even the fastest
machines may sometimes lose data. See “Performance Issues” on page 40 for more
information on getting the best performance out of your Windows machine.
Basics of Asynchronous Communication 19

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Other factors affect your choice of baud rate as well. For example, if you’re using a 2400 baud
modem there is little reason for selecting 38400 baud transfer between your PC and the
modem. Or, if you are collecting data from a device that sends only a few hundred bytes of
data per minute, there’s no sense in selecting a high baud rate. You would do better to select
a lower baud rate which would minimize transmission errors.

Data bits
A data byte can contain 5, 6, 7, or 8 bits. The vast majority of applications use either 7 or 8
bits since binary data is expressed in 8-bit bytes and text data can often be expressed in only
7 bits.

Many time-sharing systems, such as CompuServe, work with only 7 data bits because that’s
all they need to display text data. However, when binary data is transferred with a file
transfer protocol, the system almost always switches to 8 data bits. In fact, Kermit is the only
protocol in Async Professional that works with 7 data bits.

Stop bits
Stop bits follow the data bits in the serial data stream to mark the end of each data byte. The
value for stop bits is always either 1 or 2. Generally, you should use 1 stop bit.

Parity
Parity describes a bit checking scheme. When used, all of the bits in each data byte are added
together. A final bit, called the parity bit, is added so that the sum of all bits is either odd or
even, whichever you specify. The transmitter calculates and transmits a parity bit. The
receiver also calculates a parity bit and compares it to the parity bit it received. If the bits are
equal, it is assumed that the character was received without error. Otherwise, it is assumed
that there was an error during transmission.

The possible values for parity are shown in Table 3.1.

Whether or not you should use parity depends on your application. Generally, you don’t
need to use parity bits if your application relies on some other means of checking data
integrity such as block check characters in a file transfer.

Table 3.1: Possible parity values

Value Result

pNone No parity bit is added.

pEven A parity bit is added such that the bit sum is always even.

pOdd A parity bit is added such that the bit sum is always odd.

pMark A parity bit of value one is always added.

pSpace A parity bit of value zero is always added.
0 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Line errors and breaks
Serial I/O, like all forms of I/O, is subject to errors. A line error has occurred when the
characters received by the receiver are different from those sent by the transmitter. This
usually happens when the data line is disturbed by electrical interference. Your programs
must be prepared to deal with line errors. Typical actions are to discard and ignore errant
data or to ask the transmitter to send the data again. The action you take depends on the
requirements of your application.

Line errors can also occur if the receiver and transmitter are using different line parameters
or if you’ve selected a baud rate that is too high for the environment in which your
application is running.

Here are the types of line errors that can occur, what they mean, and how you can deal
with them:

UART overrun error
This error means that a second character arrived at the serial port before the first one was
processed. Generally, this means that you are running at a baud rate that is too high and
your machine is not fast enough to handle the characters as fast as they are arriving. The
usual solution is to lower the baud rate until the UART overrun errors go away.

In some cases the problem is not that the baud rate is too high, but that another process
is leaving interrupts disabled for too long or another virtual machine is hogging the
CPU. See “Performance Issues” on page 40 for more information about dealing with
UART overruns.

Parity errors
Parity errors occur when the parity bit received differs from the parity bit calculated. If the
receiver specifies pOdd and receives a character with pEven, this is a parity error. The most
common cause of parity errors is a mismatch in the parity line parameter between the
transmitter and the receiver. Always suspect this if you get a lot of parity errors when you
first connect to a new device. Another clue is when certain characters always return parity
errors and other characters never return parity errors.

Parity errors can also be caused by interference on the data line (i.e., transmission errors).
When this is the case, errors occur randomly with groups of errors interspersed with long
periods of error-free transmission. In this case the recommended solution is to reroute the
serial cable away from any sources of electrical interference. Shortening the cable could also
help.
Basics of Asynchronous Communication 21

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Framing errors
A framing error occurs when the data bits in the serial stream are not followed by a valid
stop bit, which must always have the value ‘1’. As with parity errors, the most likely cause of
framing errors is a mismatch in line parameters between the receiver and transmitter.
Always verify the line parameters at both ends of the communication link whenever you get
framing errors.

Framing errors can also be caused by electrical interference. Again, the recommended
solution for such errors is to shorten or reroute the serial cable.

Breaks
Breaks are not really line errors, but they do represent a special line condition. A line break
or break is a condition in which zero bits are transmitted for at least as long as it takes to send
one character (one “character time”). The UART recognizes this special condition and can
notify you that it has received a break. Breaks are used when a device needs to signal another
device to have it handle a special condition.

Universal Asynchronous Receiver/Transmitter (UART)
This topic covers the detailed inner workings of the UART chip, which is at the heart of most
serial ports. You don’t need to know these details. In fact, Windows insulates applications
from these details to such a degree that you can’t apply them even if you know them.

In some circumstances, however, you might find this information helpful for thinking
through a debugging problem, or you just might want a clearer picture of what’s really
happening on the chip. If you’re just getting started with Async Professional, or you already
know all you care to know about UARTs, you might want to skip this section. But be sure to
pick up the discussion at “Flow control” on page 31.

The brain of the serial communications facilities on IBM PCs, PS/2s, and compatibles is a
chip called a Universal Asynchronous Receiver/Transmitter (UART). In nearly all cases this
chip is from a family of National Semiconductor integrated circuits. Older PCs use UARTs
with chip designations INS8250 and INS8250B. Newer machines use NS16450 and NS16550
chips. Although there are slight differences between the chips in speed, internal behavior,
and features, their basic properties are the same.

The UART is responsible for all of the grunt work of serial communications. It transmits
data by taking a byte and serializing the bits onto the output line. It receives data by reading
a stream of bits from the input line and de-serializing them into a data byte. The UART also
controls the line parameters discussed earlier, and is responsible for setting and reacting to
various line and modem control and status signals.
2 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The UART does all of these things in response to requests from a program. The program
communicates with the UART through the UART’s registers. To the program, these registers
are nothing more than addresses somewhere in the PC’s I/O address space.

The IBM PC architecture also associates a hardware interrupt with each UART. You can use
the serial port without using the interrupt, but it’s generally not practical to do so. The
names that are typically used to refer to serial ports (Com1, Com2, etc.) tell you the address
of the UARTs and what hardware interrupt they use.

These addresses and interrupts are governed by two standards: the IBM PC standard for
Com1 and Com2 and the de facto standard for Com3 and Com4 on IBM PCs and
compatibles; and the IBM PS/2 standard for Com1 through Com8. Tables 3.2 and 3.3 show
the addresses and interrupts for each standard.

Even though the standards only define up to eight serial ports, many serial port boards
support additional serial ports at other base addresses and IRQs (see 3RDPARTY.HLP for
more information). Async Professional can open any serial port that is defined in Windows
by simply using the com number. Windows defaults to the values shown in the tables above.
To inform Windows of a non-standard address or IRQ, you must run Control Panel/Ports or
Control Panel/Add New Hardware.

Table 3.2: IBM PC standard addresses and interrupts

ComName Base Address IRQ Vector

Com1 03F8h 4 0Ch

Com2 02F8h 3 0Bh

Com3 03E8h 4 0Ch

Com4 02E8h 3 0Bh

Table 3.3: IBM PC/2 standard addresses and interrupts

ComName Base Address IRQ Vector

Com1 03F8h 4 0Ch

Com2 02F8h 3 0Bh

Com3 3220h 3 0Bh

Com4 3228h 3 0Bh

Com5 4220h 3 0Bh

Com6 4228h 3 0Bh

Com7 5220h 3 0Bh

Com8 5228h 3 0Bh
Basics of Asynchronous Communication 23

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Registers
The Windows communications driver communicates with a UART via the UART registers.
It controls the UART by writing information into its registers and it retrieves data and status
information by reading the registers. A UART contains eight registers, each with a specific
purpose, accessed on the PC through I/O ports starting at the base address and continuing
for the next eight port addresses. The register at the base address is called register 0, the next
register is register 1, and so on. Since the Com1 UART’s base address is 03F8h, register 0 is at
03F8h, register 1 is at 03F9h, and so on up to register 8 at 03FFh.

Each of these registers also has one or more names, as shown in the following descriptions.
Registers that provide status information when read are designated (read). Registers that are
used to program the UART are designated (write). Those that are used both ways are
designated (read/write).

Register 0: receiver buffer register (read)

transmit holding register (write)

divisor latch low (read/write)

Register 0 has three names and three purposes. When you read from register 0, you are
reading the latest received character (if there is one). When you write to register 0, you are
passing the next character to be transmitted (if the UART is ready).

The third purpose of register 0 comes into play when setting the baud rate. When the divisor
latch access bit is set, register 0 specifies the low byte of the baud rate divisor. The baud rate
divisor is a value which, when divided into a preset constant, yields the desired baud rate.
This “preset constant” is determined by an internal clock rate that is the same for all PCs.

The baud rate divisor is determined by this equation:

divisor = 115200 / baud rate

 Figure 3.1: Register 0 bit definitions.

data
bit7

data
bit6

data
bit5

data
bit4

data
bit3

data
bit2

data
bit1

data
bit0

 7 6 5 4 3 2 1 0
4 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hence, the process for setting the baud rate on a UART is to calculate the baud rate divisor,
set the divisor latch access bit, write the low byte of the divisor to register 0, write the high
byte of the divisor to register 1, and finally clear the divisor latch access bit.

Register 1: interrupt enable register (write)
divisor latch high (read/write)

UARTs can generate an interrupt in response to four different conditions. Programs specify
which interrupt conditions they want to enable by writing into this register. Here are the four
interrupt conditions:

• A character was received.

• The transmitter just finished transmitting a character.

• An error or break signal occurred.

• A modem status signal changed.

To enable a particular interrupt, set the proper bit in a byte mask and write the byte mask to
the interrupt enable register. To disable the condition, reset the bit to 0 and write the byte
mask to the interrupt enable register.

Register 1 also has a second name (divisor latch high) and a second purpose. When the
divisor latch access bit is set, register 1 becomes the high byte of the baud rate divisor (used
for setting the baud rate). See the previous discussion of the divisor latch low register for
more information on setting the baud rate.

 Figure 3.2: Interrupt enable bit definitions.

N/A N/A N/A N/A modem
status

line
error/
break

xmit
ready

recv
char

 7 6 5 4 3 2 1 0
Basics of Asynchronous Communication 25

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Register 2: interrupt identification register (read)
FIFO control register (write)

This is the counterpart to the interrupt enable register. Once you’ve enabled the desired
interrupt conditions and received an interrupt, this register indicates which condition
caused the interrupt. Only the three least significant bits of the register are actually used.

Since it is possible, even likely, that more than one condition can occur at the same time, bit
0 is used to determine whether all conditions that currently exist have been handled. When
bit 0 has a value of 0, there are conditions waiting to be handled. When bit 0 has a value of 1,
all outstanding conditions have been handled. Bits 3, 2, and 1 taken together identify the
cause of the interrupt.

Because multiple conditions can occur at the same time, the UART presents the conditions
in a prioritized order. Table 3.4 shows the priority used by the UART and the corresponding
bit masks.

The FIFO time-out condition obviously occurs only on UARTs operating with a FIFO (first
in, first out) buffer. The FIFO buffer is typically a 16 byte buffer on the UART chip that holds
received characters until the application can retrieve them. When the FIFO buffer is filled to
a preset level, a received data available interrupt is generated. The FIFO time-out interrupt
occurs only when the data does not reach this preset level. The interrupt is generated when
characters are waiting in the receive FIFO buffer and four character-times elapse without
receiving any new characters.

 Figure 3.3: Interrupt identification bits.

Table 3.4: UART and corresponding bit mask priority

Bits 3-0 Priority Interrupt type

0 0 0 1 None None

0 1 1 0 Highest Line error or line break

0 1 0 0 Second Received data available

1 1 0 0 Second Received data available (FIFO time-out)

0 0 1 0 Third Transmitter holding register empty

0 0 0 0 Lowest Modem status change

FIFO
enabled

FIFO
enabled N/A N/A int

pend

 7 6 5 4 3 2 1 0

see below
6 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
In addition to providing information about pending interrupt conditions, this register also
provides two FIFO status bits. These bits are always 0 for UARTs that don’t possess FIFO
buffers. They are both set for UARTs that possess the FIFO buffers if FIFO mode is currently
activated.

Register 2 doubles as a writable register for enabling and disabling FIFO buffers. In its role as
the FIFO control register, the 8 bits have the following meanings shown in Figure 3.4.

The first step in specifying FIFO control information is always to set bit 0. This enables
writing to the other FIFO control bits. When FIFO mode is enabled or disabled, the FIFO
data buffers are cleared of all data.

Writing a 1 to bit 1 clears just the receive FIFO buffer. Writing a 1 to bit 2 clears just the
transmit FIFO buffer.

Bit 3 is used to control DMA access.

Bits 6 and 7 are used to specify the receive FIFO trigger level, the number of bytes stored in
the FIFO before a receive interrupt is generated. Table 3.5 shows the possible trigger levels
and the corresponding bit values.

 Figure 3.4: FIFO control bit definitions.

Table 3.5: Possible trigger levels and corresponding bit values

Bit7 Bit6 Trigger level

0 0 1

0 1 4

1 0 8

1 1 14

receiver
trigger
high

receiver
trigger

low
N/A N/A DMA

mode
transmit

reset
receiver

reset
FIFO

enable

 7 6 5 4 3 2 1 0
Basics of Asynchronous Communication 27

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Register 3: line control register (write)

The line control register is used to set the line parameters baud rate, data bits, stop bits, and
parity.

Bits 0 and 1 specify the number of data bits to use. Table 3.6 shows how these bits are
interpreted.

Bit 2 specifies the number of stop bits to use. When bit 2 is set, two stop bits are generated
and checked. When bit 2 is clear, one stop bit is generated and checked. (Note that when
data bits is 5, setting bit 2 actually specifies 1.5 stop bits.)

Bits 3, 4, and 5 control parity are shown in Table 3.7.

“Space” parity means that a 0 is transmitted after each character regardless of its value.
“Mark” parity means that a 1 is transmitted. The UART automatically computes the parity
bit and transmits it when appropriate.

 Figure 3.5: Line control bit definitions.

Table 3.6: Bit interpretation

Bit1 Bit0 Data bits

0 0 5

0 1 6

1 0 7

1 1 8

Table 3.7: Parity type

Bit5 Bit4 Bit3 Parity type

0 0 0 None

0 0 1 Odd

0 1 1 Even

1 0 1 Space

1 1 1 Mark

div
latch

access

send
break

stick
parity

parity
type

enable
parity

stop
bits

 7 6 5 4 3 2 1 0

data
bits
8 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Bit 6 is used to generate a line break. While this bit is set, the UART continuously sends zeros
on the output line.

Bit 7 is the divisor latch access bit described earlier. When this bit is set, registers 0 and 1
become the divisor latch registers used to set the desired baud rate.

Register 4: modem control register (write)

The primary purpose of the modem control register is to manage the DTR (Data Terminal
Ready) and RTS (Request To Send) signals of the serial port. These two signals are also
called the handshaking or hardware flow control signals.

Bit 0 controls the state of the DTR signal. Writing a 1 into bit 0 raises the DTR signal and
writing a 0 lowers it. Bit 1 controls the state of the RTS signal. Writing a 1 into bit 1 raises the
RTS signal and writing a 0 lowers it.

Bit 2, OUT1, is a general purpose output signal, but it’s not used in the PC architecture. Bit 3,
OUT2, is a general purpose output signal that must always be enabled before interrupts can
occur.

Bit 4 enables an internal loopback mode that can be used to test some facets of proper UART
operation.

Register 5: line status register (read)

This register provides information about line error and line break conditions. It also
provides the status of receive operations (whether a character was received) and transmit
operations (whether the UART is ready to transmit a character).

 Figure 3.6: Modem control register bit definitions.

 Figure 3.7: Line status bit definitions.

N/A N/A N/A enable
loopbk

OUT2
(reqd)

OUT1
(N/A)

enable
RTS

enable
DTR

 7 6 5 4 3 2 1 0

FIFO
error

shift
register
empty

hold
register
empty

break
received

frame
error

parity
error

data
overrun

char
received

 7 6 5 4 3 2 1 0
Basics of Asynchronous Communication 29

1

1

3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Bit 7, the FIFO error status bit, is set if a character in the FIFO has a line error. Generally, you
don’t need to worry about this because the error is revealed in the normal fashion when the
character is extracted from the FIFO buffer.

Bit 6, when set, indicates that the transmitter shift register is empty. The shift register, used
internally by the UART, holds the character currently being transmitted while the individual
bits are being shifted onto the output data line.

Bit 5, when set, indicates that the transmitter holding register, register 0, is empty. You
should never write a character to register 0 unless this bit is set. After a character is placed in
the holding register and any character already in the shift register has been transmitted, the
UART moves the new character into the shift register and clears bit 5.

Bit 4 is set whenever a line break is received. This also causes a line error interrupt.

Bits 3 through 1, when set, indicate a line error has occurred. The nature of these line errors
is discussed earlier in this section. All of these bits also generate interrupts.

Bits 4 through 1 are automatically cleared when this register is read.

Bit 0, when set, indicates that characters are waiting in the receive buffer register (register 0)
or the receive FIFO. It remains set until all received data is read.

Register 6: modem status register (read)

Just as the UART can control the modem control signals, it can also read and report on the
status of similar signals that are controlled by the attached device.

The modem status register actually provides two types of information. The most significant
4 bits show the current state of the four modem signals. The least significant 4 bits indicate
which of the signals have changed state since the last time the register was read.

All these signals assume that a modem is connected to the serial port by a cable that contains
all of the proper connections. Some of these signals are also used by non-modem devices to
provide hardware flow control or other device-specific control functions.

Bit 7, data carrier detect (DCD), means that the local modem has established a connection
to a remote modem. This bit remains set for as long as this connection is valid.

Bit 6, ring indicator (RI), is set whenever the phone is ringing (i.e., a call is coming in and
needs to be answered).

 Figure 3.8: Modem control register bit definitions.

DCD
carrier
detect

RI
ring

indicator

DSR
data

set rd

CTS
clear to

send

delta
DCD

delta
RI

delta
DSR

delta
CTS

 7 6 5 4 3 2 1 0
0 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Bit 5, data set ready (DSR), is generally set whenever a modem is attached and turned on.
This assumes that the modem is configured to provide the DSR signal.

Bit 4, clear to send (CTS), is generally set whenever an attached modem is ready to receive
data. This assumes that the modem is configured to provide the CTS signal.

Bits 3 through 0 are set whenever the corresponding modem signal changes. These bits are
automatically cleared when this register is read.

For consistency, bit 2 is called the delta RI bit, but its proper name is trailing edge ring
indicator. It is set, and generates an interrupt, on the first ring from an incoming call. This is
the most reliable way of checking for an incoming call.

Flow control
Flow control refers to the ability of either end of a communications link to control the rate of
data it is receiving. Flow control is required when different parts of a communication link
have different maximum speeds for handling data.

Consider the example of a PC that is receiving data, at a very high speed, from an attached
device (e.g., data collection equipment). Assume this data is arriving so fast that the PC
doesn’t have time to process and store it all. This situation, continuing unchecked, would
eventually overflow the PC’s input buffer and data would be lost.

The solution is for the PC to tell the other end of the link to temporarily stop sending data.
Once the PC is caught up, it tells the other end of the link to resume sending data again. In
lengthy transactions, this stop/start process might be repeated many times. This process is
called flow control.

You can look at flow control from two perspectives: receive flow control and transmit flow
control. Receive flow control is the ability to tell the other side of a communication link to
stop sending data to you. Transmit flow control is the ability to honor a request from the
other end of a communication link to stop sending data to it. In order for your program to
fully implement flow control, it must be able to do both.

Flow control comes in two varieties: hardware flow control and software flow control.
Hardware flow control relies on signal lines within the serial cable to stop and start the flow.
Software flow control relies on special characters in the data stream.

It is the Windows communications driver that imposes or honors flow control requests.
Async Professional routines request that the driver enable, disable, or modify flow control.
After the communication driver’s flow control feature is enabled, it starts and stops the data
flow automatically, as needed.
Basics of Asynchronous Communication 31

1

1

3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following two subsections discuss flow control between a PC and whatever is directly
attached to the PC’s serial port. This is rather straightforward when the port is attached to an
instrument or another computer. However, when it is connected to a modem, which is then
connected via a phone link to a remote modem and PC, other issues arise. Notably, when is
the flow controlled between the local PC and the local modem and when is the flow
controlled between the local PC and the remote PC? These issues are covered in “Modem
flow control” on page 35.

Hardware flow control
Hardware flow control (sometimes called hardware handshaking) is implemented using
control signal lines in the serial cable. The name and meaning of these signals comes from
the RS-232 specification. Since the RS-232 specification describes a connection between a
terminal and a modem, these hardware flow control signals are properly called modem
control signals and modem status signals.

Many other serial devices—printers, plotters, lab instruments, and so on—also support
these modem signals for hardware flow control. Unfortunately, some manufacturers that
claim to support the RS-232 standard actually treat these signals somewhat differently.

Nevertheless, much common ground does exist, particularly among modems. The type of
automatic hardware flow control used by Windows should work with any popular modem
on the market. However, when connecting to instruments, lab equipment, printers, or other
computers, you might find slight variations in their interpretation of hardware flow control.
Flow control options are provided to help you cope with these situations.

Async Professional hardware flow control is completely automatic. Once you turn it on, the
Windows communication driver manages the modem control output signals for receive
flow control and honors the modem status input signals for transmit flow control.

Standard hardware flow control requires that the modem should raise the CTS signal before
the PC will transmit characters, and that the PC should lower the RTS signal when its input
buffer fills while receiving. Once the PC has drained the input buffer it raises the RTS signal
again. Variations on this flow control scheme exist—using different control lines, lowering
signals instead of raising them—but they can all be handled using the same concepts.

Flow control happens automatically. The application can continue to send and receive
characters without regard for flow control. The only issue you might need to be concerned
about is how long to wait for sufficient output buffer space before requesting to transmit
some characters. That is, you must handle the possibility that characters won’t be
transmitted immediately because they are blocked by flow control. You can easily account
for this situation by setting an appropriate Async Professional trigger, which will generate an
event when a specified amount of output buffer space becomes available.
2 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
This covers everything you need to know to use hardware flow control with Async
Professional. The discussion continues with a more detailed look at hardware flow control. If
you’re curious, you might want to read on.

Let’s look at the case of a PC that is sending commands to a laboratory instrument and
receiving large amounts of data back from it (shown in Figure 3.9).

The lines between the PC and the instrument represent some of the physical lines within the
cable connecting these two devices. The meaning of the lines marked data input and data
output should be obvious (that’s where the data flows). The names of the other signals are
straight from the RS-232 specification. The arrows in the diagram indicate whether a signal
is an output from the PC or an input to the PC. A quick glance shows that DTR and RTS are
outputs and DSR and CTS are inputs. Which raises the question: what do these names mean
and what do they have to do with flow control? The complete names are:

• DTR - Data terminal ready

• RTS - Request to send

• DSR - Data set ready (“data set” is another term for modem)

• CTS - Clear to send

These signals have two states: on and off. (You might also see these two states referred to as
high and low, raised and lowered, or asserted and de-asserted.)

DTR is commonly turned on by your application to indicate that your program is up and
running; but not necessarily ready to receive data. RTS is turned on by your program when
it is ready to receive data.

 Figure 3.9: Data transmission example.

data input
data output

DTR
RTS
DSR
CTS

PC Instrument
data output
data input
DSR
CTS
DTR
RTS
Basics of Asynchronous Communication 33

1

1

3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
DSR is an input signal from the attached device that, when on, means it is correctly attached
and is turned on, but not necessarily ready to receive data. CTS is an input signal from the
attached device that, when on, means it is ready to receive data.

DTR and DSR aren’t usually used in flow control (although the standard Windows
communication driver and Async Professional allow it). Instead, DTR is usually turned on
when you open a port just to notify the attached device that the port is now open. Likewise,
the attached device usually turns on DSR as soon as you power it on.

The RTS and CTS signals are the ones commonly used to provide hardware flow control.
These signals are set and monitored automatically by the communication driver. The driver
lowers RTS when its input buffer fills to the threshold you specified and it raises RTS again
when your program has emptied the input buffer below the resume threshold. While
transmitting data, the communication driver honors the setting of the CTS input signal—it
won’t transmit unless the signal is high. Whenever the CTS signal switches from low to high,
the communication driver resumes transmitting any data that is waiting in its output buffer.

Software flow control
Software flow control (sometimes called XOn/XOff flow control) is implemented by
assigning special meaning to two characters—a “stop” character and a “start” character. The
most commonly used characters are XOff (ASCII 19) and XOn (ASCII 17). When the
communication driver receives an XOff character, it stops sending data to the remote. When
it receives an XOn character, it resumes sending any data that is waiting in its output buffer.

Conversely, if the input buffer rises above the specified threshold, the communication driver
sends an XOff to stop the remote from sending data. Once the input buffer is drained
sufficiently, the driver sends XOn to request the remote to start transmitting again.

As with hardware flow control, all of this is handled automatically by the communication
driver. All you need to do is enable it.

You should set the buffer full level with more of a safety margin than is necessary for
hardware flow control. That’s because the remote device may continue to send characters for
a brief period after the XOff is sent. This is due to link propagation delays and the response
time of the remote device (how long it takes to recognize the XOff and stop transmitting).
The same issue applies to the buffer resume level. To keep things going as fast as possible,
you shouldn’t ever completely empty the input buffer before sending the XOn. Since the
remote device might take a while to respond to the XOn, it should be sent before the input
buffer is empty.

Conservative flow control levels are 75% of buffer size for the cutoff point and 25% of buffer
size for the resume point. Don’t be too conservative by setting the cutoff and resume points
too close together. That would result in “flow control thrashing” where the transmission of
many flow control characters would reduce effective throughput.
4 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Async Professional also provides support for one-way software flow control. The two types
of one-way flow control are transmit flow control and receive flow control. With transmit
flow control, data transmission is halted when an XOff is received and resumed when it an
XOn is received. With receive flow control, an XOff is sent when the input buffer hits the
buffer full level and an XOn is sent when the input buffer drops below the buffer resume
level.

Modem flow control
This discussion focuses on how flow control relates to various modem configurations.
Figure 3.10 is used to discuss modem flow control.

Terminal1 and Terminal2 are PCs. Terminal1 is local; Terminal2 is at a distant location.
Modem1 is the local modem sitting next to the local PC; Modem2 is the remote modem
sitting next to the remote PC. (In terms of the RS-232 naming conventions, the terminals are
DTEs, data terminal equipment, and the modems are DCEs, data communications
equipment.)

Let’s take the simplest case first. Assume that the two modems are both low-speed (2400
bps), non-MNP, non-V.42 modems. Such modems typically do not support any type of flow
control between the terminal and the modem. The link between two such modems is not
being managed for error control or data compression. When a serial stream of bits leaves
Terminal1, it travels through Modem1, across the phone line into Modem2, and into
Terminal2. So logically, this is a straight line connection and there aren’t any “stopping
points” where flow control might be needed.

This is not to say that you’d never have flow control in such situations. Certainly you can’t
have hardware flow control, since there’s no direct connection between the modem control
signals from Terminal1 and Terminal2. But you can, and sometimes must, have software
flow control. The software flow control acts as though the modems aren’t part of the
connection at all—the flow control is between Terminal1 and Terminal2.

 Figure 3.10: Modem flow control.

phone
line

modem 1 modem 2

terminal 1 terminal 2
Basics of Asynchronous Communication 35

1

1

3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Let’s say that Terminal1 is sending lots of text to the person sitting in front of Terminal2.
Once the Terminal2 screen fills, that person will want to pause the flow of data while reading
the text. If both terminals are honoring software flow control, then pressing ^S (which is
the XOff character) on the keyboard is sufficient. This XOff gets transmitted without
interference all the way to Terminal1, which then stops transmitting. When the person
in front of Terminal2 is ready for additional text, ^Q (which is the XOn character) is
pressed. This XOn gets transmitted to Terminal1, which resumes sending text. This is
software flow control.

Now consider the case of managed modem links. “Managed modem link” means that the
link between Terminal1 and Terminal2 is no longer a “pass-through” connection. Instead,
Modem1 collects a group of bytes from Terminal1, packages them into a block, and sends
that block, complete with error control information, to Modem2. If the block is received
without errors, Modem2 acknowledges receipt of the block (i.e., it tells Modem1 that it got
the block OK) and passes the stream of bytes on to Terminal2. If there are errors, Modem2
doesn’t pass the data on to Terminal2, but instead asks Terminal1 to retransmit the block.

Before this can work, both modems must agree to the same management scheme. Currently,
the modem industry supports two standards for managing this link: MNP (for Microcom
Network Protocol) and V.42 LAPM (Link Access Procedure for Modems, a standard
supported by CCITT). Describing either of these standards is far beyond the scope of this
manual. If your modem supports one of these standards, then your modem manual will
provide the necessary information.

In short, each of these standards provides a managed link between the two modems. This
provides opportunities for error detection and correction, data compression, and
end-to-end hardware or software flow control.

The following example clarifies what is meant by end-to-end hardware flow control.
Suppose that Terminal1 is transmitting data at a high rate over the link to Terminal2.
Terminal2 can’t process the data fast enough, so it drops its RTS line, forcing Modem2 to
stop passing data. This also causes Modem2 to stop accepting data from Modem1 (which
forces Modem1 to stop accepting data from Terminal1). Since Modem1 cannot accept data
any more, it lowers its CTS signal, telling Terminal1 to stop transmitting its data.

You can also use software flow control in these cases. Unlike an unmanaged link, however,
the software flow control is between the terminal and modem instead of between the two
terminals. But, as we just saw above, a managed link’s flow control between the terminal and
modem is just as good as terminal-to-terminal in an unmanaged link.

Managed links generally require some type of flow control—either software or hardware.
This is true even if the link is operating at low speeds (2400 bps) since you never know when
modem-to-modem retransmissions might occur, potentially causing the transmitting
terminal to overflow its modem’s buffer.
6 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Serial Communication Under Windows
Serial communications programming under DOS could often be an ordeal, requiring the
programmer to work directly with the serial port hardware. In many ways serial
communications under Windows is much easier because the Windows communications
driver handles the hardware details. Application programs rely on a set of Windows
functions to configure and manage the serial port. These functions serve as a bridge
between the communications driver and the applications program.

The 32-bit Windows communications routines send serial port control and I/O requests to a
standard communications driver named VCOMM. VCOMM does not directly control the
serial port, but relies on “port drivers” to do that. Windows provides built-in port drivers for
standard serial port hardware.

The 32-bit Windows communications routines are also thread aware and support multiple
concurrent threads. Async Professional takes advantage of threads to minimize CPU usage,
while at the same time minimizing response time to communications events.

When a TApdComPort component is opened, it creates three threads—a communications
thread and a timer/dispatcher thread to handle incoming data, and an output thread to send
data in the background.

The communications thread uses the WIN32 communications functions SetCommMask
and WaitCommEvent to sleep while waiting for communications events (e.g., incoming data
or changes in line or modem status). When a communications event occurs, WIN32 “wakes
up” the communications thread, which then notifies the timer/dispatcher thread that a
communications event occurred and must be processed.

As its name suggests, the timer/dispatcher thread has two roles: timing and dispatching. It
sleeps until its sleep time elapses or a communications event occurs. Then the dispatcher
processes the event, checking for any trigger events that are due. If a trigger event is
required, the dispatcher formats and generates an appropriate OnTriggerXxx event.

The dispatcher is working within its own thread, not within your application’s thread. To
avoid synchronization problems, it always generates events via the Windows message
dispatcher (i.e., SendMessage). SendMessage assures that the thread that created the
window is active before the message is delivered. Therefore OnTriggerXxx, OnModemXxx,
OnProtocolXxx, and all other Async Professional events are processed on the expected
thread—the thread that created the component in question.

If a needed application thread, say a thread that created a protocol, is blocked (waiting for a
semaphore or other event) when an OnProtocolStatus event is generated, the
OnProtocolStatus event must wait until the protocol thread becomes unblocked. Because
Serial Communication Under Windows 37

1

1

3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
the OnProtocolStatus event is generated from the dispatcher thread, the dispatcher itself
becomes blocked until the OnProtocolStatus can be delivered. This presents the possibility
of the deadlock where neither side can proceed and the application appears to be hung.

To avoid such deadlocks, trigger events are always generated conditionally. If the recipient
thread doesn’t respond to the SendMessage within a short period of time (several seconds)
the SendMessage attempt is abandoned and the deadlock is prevented. The downside to this
protection is that the event in question is never seen, but this is more desirable than
deadlock.

Some events can be missed without serious penalty. If other events (OnTriggerAvail, for
example) are missed, the application probably won’t function properly.

The best way to avoid missed events is to assure that threads that are expecting events are
never blocked for more than a fraction of a second. If you must block for longer periods, you
should create alternate, unblocked threads for handling the expected serial port, protocol,
fax or other communications events.

Configuring windows
The configuration of serial ports under Windows is controlled by various INI file settings.
These settings can be changed by manually editing the appropriate INI file or by running
Control Panel and selecting the Ports icon.

WIN.INI contains the following entries for communications:

[Ports]
COM1:=9600,n,8,1,x
COM2:=9600,n,8,1,x
...

Entries of this format set the initial line parameters used when a port is opened. These
settings are generally unimportant because Async Professional immediately forces the ports
it opens to the line parameters specified by the component.

SYSTEM.INI contains the following entries for communications:

Com1AutoAssign=-1
Com2AutoAssign=0
Com3AutoAssign=2
...

These entries tell Windows how to handle device contention, which occurs when two virtual
machines attempt to use the same port. When ComXAutoAssign is set to -1, Windows pops
up a dialog box whenever a virtual machine tries to open a port owned by another virtual
machine. When set to 0, Windows allows each virtual machine to access the serial port as it
wishes. Obviously, this will yield strange and incorrect results if two virtual machines are
8 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
actually using the same serial port. Values greater than zero indicate a time-out, in seconds,
that Windows uses to consider a port available. A value of 2, which is the default, means a
virtual machine owns the port for up to 2 seconds beyond its last port access. After that
time Windows considers it free for use by other virtual machines. Values greater than 1000
are ignored.

...
COM3Base=02E8
COM3Irq=3
...

These entries specify the base address and IRQ of a serial port. If they are missing, Windows
uses the industry standard addresses and IRQs (see “Universal Asynchronous
Receiver/Transmitter (UART)” on page 22 for more information).

COMIrqSharing=Off

This entry controls Windows IRQ sharing logic for serial ports. Windows sets this to Off
unless you are using a Microchannel-bus or EISA-bus machine. You should set this to On
only if you are certain that your serial port hardware can share an IRQ.

COM1FIFO=1
COM2FIFO=1
...

These entries tell Windows whether to enable the receive FIFO (first in, first out) buffer
available on 16550 UARTs. Off or 0 means disable the FIFO, On or 1 means enable the FIFO.
If the UART doesn’t have a FIFO buffer Windows ignores this setting. Windows always sets
the FIFO trigger level to 14 when the FIFO is enabled.

The FIFO buffer can improve throughput and reduce errors due to UART overruns. It
should always be used if available.

COMBoostTime=2

This entry applies to all serial ports. It is the number of milliseconds by which the time slice
of the virtual machine is extended after processing a serial port interrupt. The default value
is 2. The objective of the boost time is to keep the current virtual machine active to handle
the next serial port interrupt. If another interrupt does not occur within the specified
number of milliseconds the time-slice expires and the virtual machine is suspended until the
next character arrives.

Windows documentation advises caution when changing this value, since too large a value
may prevent other virtual machines from receiving adequate execution time.
Serial Communication Under Windows 39

1

1

4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Performance Issues
Communications applications gain a lot from the Windows architecture: a common API for
communications tasks, multitasking support, and device independence. This ease of use is
unfortunately offset by a loss in performance. The Windows architecture forces a huge
amount of overhead onto communications applications, with the result that the highest
achievable baud rate and throughput will always be substantially lower than those
achievable under DOS.

Because there are so many variables that come into play (machine speed, INI file settings, ill-
behaved Windows applications, replaceable port drivers, etc.) it is impossible to predict how
well an application will perform.

There are several ways you can optimize performance:

• Use as low a baud rate as possible. For example, don’t use a baud rate of 38.4K baud
when the data rate is only a few hundred bytes per second.

• While communicating, reduce the number of active DOS boxes that are performing
background processes. If you are redistributing your application to other users, warn
them of lower data throughput when multiple background DOS boxes are active
during communications.

• Use a 16550 UART, which has a 16 byte FIFO buffer, and set COMxFIFO=On in
SYSTEM.INI.

• Set the COMBoostTime value in SYSTEM.INI above 2.

• Replace COMM.DRV with a higher performance communications driver. See the
README.TXT file for a list of replacement drivers.

• In those cases where incoming data is extremely critical, use an intelligent serial port
board, which off-loads serial interrupt processing tasks from the CPU. See the
README.HLP file for a list of intelligent serial port boards.
0 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Event Management
Windows is a message-driven environment and Async Professional is designed to fit into
the Windows message system. Async Professional provides a communication dispatcher
that is activated regularly to process data received by the Windows communication driver.
The dispatcher transfers the received data from the Windows input buffer to its own
dispatch buffer and, when appropriate, generates trigger events that can be processed by
your application.

The standard dispatcher is started whenever a comport component is opened. Each opened
port starts three new threads that together provide the dispatching functions. When the port
is closed the three threads are released. A Winsock-specific dispatcher is used when you are
using Winsock.

Once the dispatcher thread gains control, it copies received data from the Windows buffers
to its buffer and updates internal fields with new line or modem status information. If any of
these actions require trigger events, the dispatcher sends a message to the appropriate
component and the component generates the corresponding event.

Async Professional uses the term trigger for any event that can cause the dispatcher to
generate a message. There are four types of triggers:

• Data available trigger: received data is available.

• Data match trigger: a particular character or character string was received.

• Status trigger: a line or modem status event occurred.

• Timer trigger: a timer expired.

Triggers are associated with a particular port component. The TApdComPort component
contains a variety of functions for managing triggers. Triggers can be added, activated,
modified, and deactivated.

The TApdComPort component registers a message handler with the dispatcher so that it
receives each message. The component then categorizes the messages and generates VCL
events for a handler in your application.

The triggers and their associated event handlers are described fully in the documentation
for the TApdComPort component: Chapter 2 in the Reference Guide.
Event Management 41

1

1

4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Device Independence
Async Professional provides for device independence by identifying a set of required core
routines and building all other capabilities on top of those. Windows already defines such a
set of core routines in the basic Windows API. In fact, Windows already provides for device
independence by using installable device drivers. The producer of a new communications
device provides a device driver to translate the standard Windows communications API
calls into functions specific to the device.

This is huge step forward for applications programmers since it places the burden of
supporting odd devices onto the device producer. Unfortunately, the producers don’t always
do a perfect job. Some are slow to produce Windows drivers and their drivers differ in subtle
ways from the standard drivers. For these reasons Async Professional includes its own
device independence facility. Hopefully the need to use it will be rare.

Since Windows already defines a standard communications API, Async Professional simply
adopts this API for the core routines. Three device layers are supplied in the following units:

• AwWin32: The dlWin32 device layer supports the standard WIN32 API (VCOMM
and all vendor supplied replacement port drivers).

• AwWnsock: The dlWinsock device layer supports network and Internet
communications using Winsock.

• TAPI: Located in the AwWin32 units is a descendant device layer designed specifically
to support TAPI. This device layer differs from its ancestors only by the fact that TAPI
services are employed to open and close the serial port, and are automatically
activated when the comport component’s TapiMode property is set to tmOn.

The dlWin32 and dlWinsock device layers are the only ones available to your application
directly. The TAPI device layer is automatically selected when the comport’s TapiMode
property is tmOn. A TApdWinsockPort can select either the dlWin32 device layer to
emulate the TApdComPort or the dlWinsock device layer to connect via Winsock.

Async Professional also provides for custom device layers. Custom device layers are
implemented as classes derived either from TApdBaseDispatcher or—if the custom device is
similar to one of the devices directly supported by Async Professional—from one of its
descendants. TApdBaseDispatcher is declared in AWUSER.PAS. To activate your custom
device layer, you’ll have to derive a new port component from TApdCustomComPort,
overriding the ActivateDeviceLayer method to return an instance of the newly defined
dispatcher class.
2 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
A custom device layer derived directly from TApdBaseDispatcher must override the
following methods in order to implement support for a particular hardware device:

function OpenCom(
ComName: PChar; InQueue, OutQueue : Cardinal) : Integer;
virtual; abstract;

function CloseCom : Integer; virtual; abstract;
function EscapeComFunction(

Func : Integer) : LongInt; virtual; abstract;
function FlushCom(Queue : Integer) : Integer; virtual; abstract;
function GetComError(

var Stat : TComStat) : Integer; virtual; abstract;
function GetComEventMask(

EvtMask : Integer) : Cardinal; virtual; abstract;
function GetComState(var DCB: TDCB): Integer; virtual; abstract;
function ReadCom(

Buf : PChar; Size: Integer) : Integer; virtual; abstract;
function SetComState(

var DCB : TDCB) : Integer; virtual; abstract;
function WriteCom(

Buf : PChar; Size: Integer) : Integer; virtual; abstract;
function SetupCom(

InSize, OutSize : Integer) : Boolean; virtual; abstract;

function WaitComEvent(var EvtMask : DWORD;
lpOverlapped : POverlapped) : Boolean; virtual; abstract;

Unfortunately, describing how to write a new device layer is beyond the scope of this
manual. If you find the need to do so, please study the supplied device layers in the Async
Professional source code.
Device Independence 43

1

1

4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
4 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 4: Overviews and Troubleshooting Sessions

Communications programming is such an intricate undertaking—and Async Professional
so comprehensive a library—that many developers find gaining a broad view of the
requirements and possible solutions for any task to be the largest obstacle they face.

This chapter provides overviews of two issues that have been raised frequently by APRO
users: picking the right modem for your next project and issues regarding voice modems
and TAPI voice support. A third overview offers a general discussion of the new Fax Server
Components and how they inter-relate and a fourth overview offers a collection of tips and
techniques for debugging Windows communications programs and diagnosing common
hardware difficulties.

Three troubleshooting topics give some common questions and answers that appear
regularly in the TurboPower newsgroups regarding communications sessions, file transfers,
and fax sessions.
 45

1

1

4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Overview: Choosing a Modem
This topic covers recommendations for picking the right modem for your next project.

“What modem should I buy?” is a very common question. Those of you asking the question
probably had a hard time getting a straight answer. Unfortunately, this particular question is
difficult to answer with any reasonable degree of accuracy. Here’s why, along with some
general recommendations for buying your next modem.

It’s a jungle out there!
The modem market is extremely dynamic and competitive. Any modem may cease to exist
tomorrow. (Indeed, the manufacturer of the modem may have disappeared.) Those of you
keeping an eye on technology news probably noticed that some of the “big boys” in the
modem business (such as Motorola and Hayes) closed up shop over the last year or two.

This level of competition has driven margins down to a bare minimum. Unfortunately, the
competition seems to be primarily based on price and feature set. Sure, competition is good,
but not when it gets to the point that corners are cut. We’ll mention some specifics about
these “cut corners” a bit later.

You find yourself thinking, “this should be easier…”
The more you learn about modems—the more you learn about their quirks and how to deal
with them—the more you realize how tough the situation is. There are variations in the
hardware and firmware used in the modems—even modems with the same exact make and
model number. These variations may not be public knowledge: the details of such variations
are often kept within the walls of the modem maker. With modems, like any other piece of
hardware, there are variations in quality due to an imperfect manufacturing process.
Granted, the variations are usually kept to a minimum when you deal with the more
respected manufacturers, but they exist nonetheless. Even top ranked manufacturers can
have a bad day (or batch).

Is the situation hopeless? Well, no. To be honest, most modems work reasonably well most
of the time—so there’s no need to panic. Arming yourself with a bit of knowledge before
venturing out to the nearest computer store is worth the effort though—it’ll increase your
chances of getting something with a reasonable level of reliability.
6 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Quick lesson: modems 101
What exactly is a modem, anyway? Well, even that is hard to answer these days as it’s become
a bit of a marketing term. As an example, the telephone service called DSL in the United
States labels the device use to connect the phone line to the computer a modem, but it’s
really more of a network router. Strictly speaking, a modem is a MOdulator/DEModulator.
It converts digital signals from the computer’s serial port to modulated analog signals for the
phone line (and vice-versa).

The term “modulated” or “modulation” refers to the technique of combining information
(the data from the serial port) with a carrier wave that travels well through the target
medium (the phone line). The carrier wave for a standard phone line is usually restricted to
audio frequencies, since that is what the phone line (and associated equipment) is designed
to handle. Modulation also makes things like radio and television possible, the carrier wave
there being very high and ultra high frequencies that can travel through air/space.

Besides the basic modulation/demodulation, a modem has a lot of other jobs to do. It needs
to be able to properly connect with a modem on the other end of the line – negotiating
things like the type of carrier to use as well as the type of error correction and data
compression to use. Once a good connection is established and data starts flowing; the
modem dynamically encodes, decodes, compresses, decompresses, modulates, and
demodulates the data – all while checking the data for errors (requesting a resend of any
data that has errors). That’s for simple modem communications, things like faxing and voice
communications add more factors to the equation.

The good news is most of this work is done without your knowledge (or even APRO’s
knowledge). Just keep in mind that it’s a complex process, and things can easily go wrong.

What should I buy?
Here are some general guidelines. Remember, these are only general guidelines. TurboPower
has several modems that break one or more of these guidelines and still work fine. We also
have a couple modems that follow all the rules and are problematic.

Avoid Winmodems and RPI modems, otherwise known as software modems
These modems offload some of the “smarts” of the modem to the host computer. They use
software drivers to handle things like compression and error correction that are normally
handled by the hardware/firmware in the modem. To be fair, these modems have a couple of
advantages—the drivers are easy to update, and the overall cost of the modem is lowered
(the whole concept of a software modem probably came about as a result of the competition
in the modem market).
Overview: Choosing a Modem 47

1

1

4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
However, software modems have several disadvantages, for example:

• The host computer is forced to donate resources in support of the communications
session (not only the CPU, but also memory, data bus, power and so on).

• Shifting these duties to software results in an overall loss of efficiency (custom
hardware is better suited to handle this type of processing).

• Most software modems will replace the standard Windows serial port drivers. This
could affect all serial communications on the system, since all access to the serial
ports will go through the replacement drivers. For example, some replacement drivers
only support 8 data bits, no parity, and 1 stop bit, which would cause garbled
characters if a connection is made by any serial port on the system using any other
serial port settings.

• The modems are tied to the operating system. Most currently do not work in alternate
operating systems such as Linux.

• The software drivers that support these modems are proprietary, and cannot be used
directly without license. For this reason, APRO does not have access to the error
correction and compression features of these modems unless the modem is accessed
through TAPI.

How can you tell if a modem is a software modem? Usually, you’ll see “Winmodem” or
“RPI” somewhere on the box. Another indicator is if Windows is the only supported
operating system. A fairly comprehensive database of modems that identifies software
modems can be found at http://www.o2.net/~gromitkc/winmodem.html. This website also
has additional information about modems, as well as useful links to other modem websites.

Use external modems
This is simply the best way to ensure you get a modem with all its brains intact. It does not
seem to be practical to produce an external modem that uses drivers to handle things like
error correction and compression. An external modem is also easier to monitor and
troubleshoot (most have status indicator lights on the front panel). External modems have
their own power supply—so it’s not an additional load on your computer’s power supply.
External modems are often easier to install and set up, since you don’t have to open the
computer case and deal with system settings such as IRQs. Admittedly, this situation has
improved somewhat with innovations like Plug and Play—but that’s not available with all
operating systems.
8 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Don’t “chase the latest technology”
Modem makers often race to hit the market first with a new feature in order to gain market
share. It often takes a little while to get new features reliable though, so the first few batches
of modems sporting a brand new feature often aren’t as reliable as subsequent batches will
be.

Get a modem with the features you need, and no more
In other words, if you need a modem strictly for faxing, why get a voice modem? This is a
cost saving recommendation for the most part, but there’s a certain “less can go wrong”
issue also.

Get a modem that supports more than one fax class if you’ll be faxing
Having options in this area is a good thing—if one of the available standards doesn’t work
for a given situation, another option often will. APRO currently supports Class 1, Class 1.0,
Class 2, and Class 2.0 faxing.

The fax class defines the communication between APRO and the modem. Class 2 and 2.0
modems handle more of the work themselves, with only minimal communication required
between APRO and the modem. This is usually an advantage, because the modem handles
most of the work (similar to the advantages mentioned above in the software modem
discussion). A potential disadvantage with Class 2 & 2.0 faxing is that APRO is “kept in the
dark” during large portions of the fax session. Obviously, this isn’t a problem if the fax
session goes well—but if there are problems during the session, APRO has limited ability to
detect, correct, and log the situation.

With Class 1 and Class 1.0 modems, APRO is intimately involved with nearly all aspects of
the fax session. As stated earlier, this loads the system more but if things go wrong, there are
more options available to correct the situation.

Apply common sense
Use well-known brands. It’s tough to know for sure if the maker of your modem will still be
around in a year or two in the event you need a new driver or support for your modem. The
odds seem to be a bit better if you stick to an established brand.

Buy from a store with a reasonable return policy. This should allow you to test the modem in
the environment (and with the application) you’ll be using.

If you need to buy many modems for a project, buy one or two first and test them
thoroughly with the code you’ll be using before committing the money for all of them. This
only makes sense. If you’re going to be buying several hundred modems, make sure you’re
getting modems that will work well in your situation.
Overview: Choosing a Modem 49

1

1

5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Overview: Using the Fax Server Components
This topic shows what the TApdFaxServer, TApdFaxServerManager and TApdFaxClient
components do and how they interrelate.

Async Professional has always had components to send, receive, and manipulate faxes:
TApdSendFax and TApdReceiveFax. These components are discussed fully in other sections
of the Async Professional documentation. The new Fax Server Components:
TApdFaxServer, TApdFaxServerManager and TApdFaxClient represent a considerable
design-shift from other APRO faxing components.

To clarify the inter-dependencies of the Fax Server Components, the following discussion
breaks the Fax Server paradigm up into manageable pieces: device configuration, fax
reception, job creation and scheduling and fax transmission. It will be helpful if you have a
general understanding of the purpose of and process behind a fax server before we get into
details.

What is a fax server?
A fax server is a group of functions that send, receive and manipulate faxes. It should also
handle scheduling faxes, and sending faxes to multiple recipients. Async Professional offers
you a choice: you can use the separate TApdSendFax and TApdReceiveFax components,
work up some form of queuing system and a way to send the same fax to different people at
different times or you can let the Fax Server Components do much of this for you.

The fax job
The key to the Fax Server Components is the concept of the fax job. The Fax Server
Components use fax jobs to handle scheduling faxes and multiple recipients. Fax jobs are
basically regular APF files with additional headers. There is a job header, which contains
information that applies to all recipients of the fax; such as who is sending the fax, the
friendly name of the fax, and pointers to cover page text and the actual APF data. Following
the job header is a recipient header for each recipient. The recipient header has information
specific to each recipient; such as the phone number, header line information, and
scheduling information. The fax job file also can hold the text of a cover page document,
allowing you to customize the cover page for each recipient using replaceable tags in the text.

Who does what?
The TApdFaxServer, TApdFaxServerManager, and TApdFaxClient work together. Each
component has it’s own purpose, and they all need to be working properly for the process to
function as designed.
0 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TApdFaxServer component is the only component out of the three that communicates
with the physical faxmodem. This component is responsible for receiving and sending faxes.

The TApdFaxServerManager component manages the TApdFaxServer for sending faxes.
The TApdFaxServer component asks the TApdFaxServerManager component for fax jobs
that are ready to be sent, and the TApdFaxServerManager component returns the job to
handle. This component does not communicate with the modem; it just gives the
TApdFaxServer faxes to send.

The TApdFaxClient component’s primary task is to create fax jobs. The fax job format is a
modification of the regular Async Professional APF format, and the TApdFaxClient handles
making those modifications.

Device configuration
The TApdFaxServer component makes configuring a device to use for faxing a straight
forward process. Drop a TApdComPort on the form, and set the ComNumber property to
the serial port number of the faxmodem you want to use. If you want to use TAPI, drop a
TApdTapiDevice component on the form also. Finally, drop a TApdFaxServer component
on the form, and set the ComPort property to the TApdComPort component we just
dropped on the form, and the TapiDevice property to the TApdTapiDevice component.
That’s all there is to it, when the TApdFaxServer needs access to the port, it will open it. Once
the port is no longer needed, the port will be closed.

OK, it’s a bit more complicated than this, but not much more. If the
TApdComPort.TapiMode property is tmOn and the TApdTapiDevice.SelectedDevice is
pointing to a valid TAPI device, the port will be opened through TAPI. If the SelectedDevice
is not valid or an empty string, the port will be opened through the TApdComPort. If the
TApdComPort.TapiMode is tmOff, then the TApdTapiDevice is ignored.

Fax reception
The TApdFaxServer component handles receiving faxes and the process is surprisingly easy.
The TApdFaxServer.Monitoring property controls whether or not incoming faxes should be
received. Set this property to True to receive incoming faxes; set it to False to stop receiving
faxes. When incoming faxes are received, they will be named according to the
FaxNameMode property, and saved in the directory specified by the DestinationDirectory
property. The OnFaxServerFinish event will fire for each fax that is received successfully; the
OnFaxServerFatalFinish event will fire for each fax that is not successfully received.
Overview: Using the Fax Server Components 51

1

1

5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Job creation and scheduling
Fax jobs, in our context, are files that contain fax data to send (similar to our APF format)
and have additional headers that have information about where the job goes and when to
send it. The TApdFaxClient creates these jobs. Since there is a lot of information required to
schedule a fax, this step is rather detailed.

Most of the properties of the TApdFaxClient component are included in the APJ file that it
will create. Figure 4.1 shows the Object Inspector.

Enter the name of the text cover file in the CoverFileName property, and the name of the
APF fax file that you want to send in the FaxFileName property. When the job is created,
these two files will be loaded and embedded in the APJ file.

The JobFileName property is the name of the APJ that will be created. JobName is a short
description of the fax job. Sender is the name of the person or machine that is submitting the
fax.

The other properties are specific to the recipient of the fax. HeaderLine, HeaderRecipient,
and HeaderTitle all relate to the line of text that is at the top of the fax when it is sent.
PhoneNumber is the number of the fax machine to which this fax will be sent.

There is one property that is not accessible at design time, or through the Object Inspector:
the scheduled date and time that the fax should be sent. Set the TApdFaxClient.SchedDT
property to the TDateTime that the fax should start. If the property is not set, then it is
assumed that you want to send the job immediately.

 Figure 4.1: The Object Inspector.
2 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Once all of this information is entered, call the TApdFaxClient.MakeFaxJob method, and
the job file will be created.

To add additional recipients to the fax job, so the identical cover page and fax file is sent to
different machines, set the PhoneNumber, HeaderTitle, HeaderLine, HeaderRecipient, and
SchedDT properties to what you need for the new recipient; and call the AddRecipient
method.

After all this is done, just copy the APJ to the directory being monitored by the
TApdFaxServerManager, and it will get picked up and faxed. If you have a single recipient
for the fax job, you can save a step by specifying the monitored directory for the
FaxJobFileName property, and you won’t have to copy it there later.

Fax transmission
As we’ve already mentioned, submitting a fax job for transmission consists of creating the
fax job and putting it where the TApdFaxServerManager component can see it. The process
is just a little more complicated than that, but that is the general idea.

Set up the TApdComPort and TApdTapiDevice components, as you did earlier for fax
reception (if you are already set up to receive, you don’t need to do anything else with these
components).

The TApdFaxServer component sends faxes when the TApdFaxServerManager component
gives it a fax to send. To find a fax to send, the TApdFaxServerManager monitors a specific
directory. Drop a TApdFaxServerManager component on the form, and set the
MonitoredDir property to the directory to look at. The TApdFaxServerManager component
is now configured to provide fax jobs to the TApdFaxServer component.

The TApdFaxServer component will ask the TApdFaxServerManager component for fax
jobs on an interval defined by the SendQueryInterval property (in seconds). Since the
TApdFaxServerManager component does a lot of disk access when asked for a job, it’s a
good idea to keep SendQueryInterval relatively large, 30 seconds should be the minimum.
When SendQueryInterval is a non-zero value, the TApdFaxServer component starts
requesting fax jobs from the TApdFaxServerManager component, and sends them when
they are ready.

Advanced topics
What we’ve talked about here is a fairly simple fax server. You can easily expand on this by
having multiple TApdFaxClient components distributed across a workgroup, each one
submitting fax jobs to a TApdFaxServerManager component. Or, you can have several
TApdFaxServer components, each connected to a separate fax modem, all looking at a
single TApdFaxServerManager component. Or, you can have multiple TApdFaxServer
components looking at several TApdFaxServerManager components. One feature that is
Overview: Using the Fax Server Components 53

1

1

5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
requested fairly often concerns the storage of the fax job files (APJs). Copying APJ files
across the network from a client to the directory being monitored by the
TApdFaxServerManager is often cumbersome, posting an APJ as a BLOB field in a database,
or even storing the information in a different structure, might be better suited to your
environment. The TApdFaxServerManager.OnCustomGetJob method can be used to
support an alternate job storage medium. This event is generated when a TApdFaxServer
component requests a job (based on the SendQueryInterval timer). With a little work you
could look up the next fax in a database, create a temporary fax job file, and then let the
TApdFaxServer fax that.

Related examples
FXSRVR.DPR

FXCLIENT.DPR
4 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Overview: TAPI Voice Support
This topic offers tips and techniques for using voice modems and TAPI voice support.

• TAPI Voice support is only available with the Unimodem/V TSP (TAPI Service
Provider) and the Unimodem/5 TSP. Unimodem/V is installed by default in Windows
95OSR2, Windows 98 and Windows ME. Unimodem/5 is installed by default in
Windows 2000. A voice modem that is TAPI compliant and accepts the AT+V or
AT#V command set is also required. Unimodem/V is available for download from
Microsoft’s web site for Windows 95. A list of voice modems that Microsoft has tested
is included in the Unimodem/V and Unimodem/5 installation’s Readme. TAPI Voice
support is not available in Windows NT 4.0 unless the modem manufacturer provides
a voice-enabled TSP.

• Windows 95 OSR1 does not come with Unimodem/V, but OSR2 does. You can verify
whether you have Unimodem/V by checking the version number of the
Windows\System\Unimdm.tsp. It will be 4.1 or greater for Unimodem/V.

• Windows NT does not support the Unimodem/V Driver. However, some
manufacturers may supply their own TAPI compliant driver for NT support.
Windows 2000 includes Unimodem/5, which is fully voice capable. Unimodem/V
and Unimodem/5 are not the same thing. The “V” in Unimodem/V stands for
“Voice”, the “5” in Unimodem/5 is for NT 5 (Windows 2000).

• Be aware that manufacturers (hardware and TSPs) may include or exclude TAPI
functionality at their discretion. Some devices may or may not support certain
functionality.

• Implement organized and optimized state machines in the OnTapiDTMF and/or
OnTapiWaveNotify event handlers if you are implementing DTMF for automated
Voice and wave recording prompting.

• Both the telephone line and the modem must support Caller ID for an application to
support it. Caller ID formats vary around the world: make sure your modem supports
the format used by your telephone company.
Overview: TAPI Voice Support 55

1

1

5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
• Wave files used in TAPI applications must be of a specific format. Simply opening the
Sound Recorder and recording will not provide compatible WAVE files. PCM 8,000
Hz, 16 Bit, Mono is usually a valid format, but you will have better sound quality if
you use a format directly supported by your modem. (See your modem’s
documentation for the native formats it supports.) You can convert other WAVE files
by running Sound Recorder, opening an existing WAVE file, selecting the Properties
Dialog, choosing the Convert Now... button and changing the settings. It is a good
idea to go ahead and create a new TAPI quality selection for the wave type list.

• Trim your wave prompts. In sound recorder (or any wave editor), trim silence from
the beginning and the end of the wave file. Otherwise, users may get impatient with
your application.

• In general, it is good practice to set InterruptWave to True. This allows callers to break
the current wave prompt being played and proceed with the call. However, if there is a
voice prompt that must be listened to completely before the caller should proceed, set
InterruptWave to False for that single prompt. Always reset InterruptWave back to
True when possible.

• The sound quality provided by a voice modem varies greatly between manufacturers,
models, and sometimes the modem batch. The best sound quality and control will
come with a dedicated voice board such as those provided by Dialogic, BrookTrout,
MediaPhonics, etc. Regular, off the shelf voice modems are primarily data modems
with the voice command set added on. Many voice modems do not have facilities for
volume control or audio stream normalization. The dedicated voice boards cost
more, but they are worth it for higher quality voice processing.

• Not all voice modems or TSPs provide accurate call progress detection. This means
that your modem may not be able to tell when the remote party actually answers the
phone when you call them. Unimodem/V and Unimodem/5 bypass call progress
detection to a large extent when an outbound call is made, and they signal a
connection shortly after dialing, regardless of whether or not the called party has
answered the phone. Inbound calls are signaled more reliably, since the TSP knows
when it answered the call. Likewise, Unimodem/V and Unimodem/5 usually cannot
tell when the remote party hangs up the phone. Dedicated voice boards usually
provide much more reliable call progress detection.

• Async Professional negotiates for TAPI version 1.4, which is backwards compatible in
all later TAPI versions as of this writing. Async Professional implements a few TAPI
2.0 functions, such as retrieving the port number associated with the device. Async
Professional also implements the TAPI Line device; TAPI Phone devices are not
supported.
6 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
• Unimodem does not provide any voice modem capabilities. Unimodem/V,
Unimodem/5, and some third party TAPI service providers support voice modem
capabilities. Table 4.1 shows the availability of Unimodem on various operating
systems.

Related examples
EXFAXOD.DPR - Example of Fax-on-Demand (Faxes sent on separate call)

EXFODR.DPR - Example of Fax-on-Demand (Faxes received on same call)

EXFODS.DPR - Example of Fax-on-Demand (Faxes sent on same call)

EXRECORD.DPR - Example of Voice Recording on a call (simple VoiceMail)

EXVOICE.DPR - Example of DTMF Detection

Table 4.1: Unimodem availability by operating system

Win 95 OSR1 Win 95 OSR2 Win 98 Win ME NT 4 W2K

Unimodem X X

Unimodem/V Download X X X

Unimodem/5 X
Overview: TAPI Voice Support 57

1

1

5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Overview: Debugging Windows Communications Programs and
Communications Hardware
In this section, we provide a collection of tips and techniques for debugging Windows
communications programs and diagnosing common hardware difficulties. Some of these
suggestions are very simple and you may well already use them. Others, however, are
specific to communications programs and might cover issues you haven’t previously faced.

First, always make sure that your hardware is set up correctly (check connections, cabling,
switches, etc.). The best way to verify this is to start with a known, reliable communications
program such as one of our example programs. If that doesn’t work, you know that there’s
something wrong with the serial port, the cable, the device you are connected to, or the line
parameters, in this case try the techniques listed below for diagnosing hardware problems.

Using the debugger
If you have used the DOS libraries Async Professional or Async Professional for C/C++, you
may recall cautions about using debuggers with communications programs. DOS debuggers
tend to interfere with communications interrupt service routines and cause loss of incoming
data and prevent outgoing data from being transmitted.

Under Windows you can ignore those cautions. The communications interrupt service
routine is in the Windows device driver and isn’t blocked by Windows debuggers. While in a
debugger, you can freely step into or over any communications routine without harming
either the input or output data flow.

Be aware, however, that it is still possible for incoming data to stack up in the
communications driver. While you are leisurely stepping through a routine in the debugger,
your application won’t be processing timer or communications notification messages. And
if these messages aren’t processed, data cannot be removed from the communications
driver. If data is arriving in an uninterrupted stream, the driver’s input buffer will eventually
fill to capacity. If flow control is in place, the driver will impose flow control, otherwise data
will certainly be lost.

Using the Async Professional debugging tools
Async Professional has several built-in features that aid in the debugging process. The
simplest is the tracing facility. It provides a character-by-character audit report of all the data
transmitted or received by your program. Tracing is particularly useful when your program
advances to some point and then starts misbehaving. After a few minutes of study, a trace of
such a program run will generally lead you to the problem area. See “Tracing” in Chapter 2
of the Reference Guide for more information.
8 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Async Professional provides another auditing tool called dispatch logging, which works at a
much lower level than tracing. Dispatch logging provides an exact chronology (with
millisecond timestamps) of all events processed by the internal dispatcher, as well as state
changes in associated APRO components. It’s handy for figuring out problems with
hardware flow control and other control signal situations (e.g., “why isn’t my program
answering a ringing phone?”). See “Dispatch Logging” in Chapter 2 of the Reference Guide
for more information on this facility.

Getting technical support
TurboPower Software Company offers a variety of technical support options. For details,
please see the “Product Support News” enclosed in the original package or go to
www.turbopower.com/support.

Technical support is always a tough job and throwing communications problems into the
equation makes the task even tougher. For that reason, you should do several things before
asking for support. These may seem like trivial things (and some of them are indeed trivial),
but getting them out of the way ahead of time could save you some effort.

First and foremost, if you’re writing an application and not getting anything, please try the
supplied, unmodified, demonstration programs. This is a polite way of saying “make sure
it’s plugged in” before deciding your application doesn’t work. Whether you’re connecting to
a piece of data collection equipment, plugging in a new plotter, or just trying to send
commands to a modem, start from a known, reliable program to prove to yourself that the
device is hooked up, properly configured, and connected with a working cable.

If you’ve proven that all is well with your hardware but your program still isn’t behaving
properly, be sure to use some of the Async Professional built-in debugging tools, Tracing
and Dispatch Logging, to try to find the problem.

Finally, any Async Professional routine that can fail generates an exception or returns an
error code if an error occurs. A fair percentage of technical support requests are the result of
an application program continuing to use an object after an error has been reported. To
avoid this problem in your programs, be sure to follow up on exceptions and check all error
codes.

If you tried a “known good program” and applied all the built-in debugging tools and you’re
still having a problem figuring out what’s going on, then contact us through one of our
support options and we’ll do our best to help you find a solution. Depending on the problem
you’re having, we may ask such questions as “What did the example project do in that
situation?” or “Did you try TermDemo?” or “What error code was returned?”. If you have
answers to such questions handy, we’ll probably be able to zero in on the problem much
faster. We might also need to discuss your trace file or event log file. Please be sure to have
such files available when the problem warrants it.
Overview: Debugging Windows Communications Programs and Communications Hardware 59

1

1

6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Common problems
Here’s a brief discussion of some of the common problems that popped up during
development and testing of Async Professional. They are organized in a question and
answer format.

Nothing works, not even the supplied test programs. What’s wrong?
Probably a hardware or cabling problem that you’ll need to figure out before you can go any
further. Common problems include disconnected, improperly configured, or outright bad
modems; two or more serial ports using the same system resource(s); or another device
(e.g.: a mouse or network card) using a system resource usually reserved for a serial port.

Despite the increasing power and sophistication of desktop computer systems, serial
communications remains a remarkably primitive and awkward set of standards and
practices that leaves a lot of room for things to go wrong.

When it’s not working there are a number of places to start looking, depending on your
particular situation.

The modem isn’t working. What do I do?
Modems are peculiarly delicate devices; they can be easily damaged by physical events, static
discharge, or “spike” currents over the phone line; they even sometimes fail right out of the
box.

In general:

• Make sure that the phone line is attached and is live (check with an actual phone
device to make sure you get a dial tone).

• Make sure the phone cord is going into the correct modem jack. Most modems have
two: one “line” into which you should plug the line that is going to the wall jack, and
one for the “phone” which allows you to attach a phone or other device beyond the
modem.

If you’re using an external modem:

• Make sure the modem is plugged in and turned on (you should see lights on the front
panel).

• Make sure that the cable between the computer and the modem is attached to the
correct port on the computer. Some SCSI interface cards have a port that looks exactly
like a 25-Pin serial port. Also make sure you get a “straight through” cable for this
purpose, a “null modem” cable may sound like what you need, but is actually used for
a different purpose.
0 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
If you’re using an internal modem:

• Make sure the modem is seated properly in the card slot.

• See the sections below on Com Port setup for information on possible resource
conflicts.

If none of these seem to help:

• Make sure the phone cord is good (test with a phone using that cord).

• If possible try a different modem device in the same situation to eliminate a bad
modem as the problem.

• Try the serial port checks listed next.

The serial ports aren’t responding. What do I do?
Serial communications on a PC operates through serial “ports”. These originally were
physical wires that had a particular organization and operation. Now your setup may
include “virtual” serial ports that exist only in software; these allow communicating with
many kinds of devices as if they were serial devices (such as USB modems).

For communication through a serial port to occur, the port must be configured correctly.
Such configuration issues are discussed in the next few sections.

Resources:

In order to function, serial ports require certain “resources” from the computer in which
they are installed, generally this will consist of a “Interrupt Request” (IRQ) number, and a
“Base Address”.

On IBM PC Compatibles, the traditional resource assignments for the first four serial ports
(COM1-COM4) are shown in Table 4.1.

Note that traditionally COM1 and COM3 share an IRQ, as do COM2 and COM4; this is a
hold over from the early days of the IBM PC when there were only 8 IRQs available, and the
nature of software at the time made it unlikely that more than one or two ports would be
accessed simultaneously.

Table 4.1: IBM PC serial port resource assignments

Port IRQ Base Address (in hexadecimal)

COM1 4 03F8

COM2 3 03E8

COM3 4 02F8

COM4 3 02E8
Overview: Debugging Windows Communications Programs and Communications Hardware 61

1

1

6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
On modern systems it is generally desirable and often necessary to set COM3 and COM4 to
different IRQs than those listed in order to prevent conflicts (it’s generally best to leave
COM1 and COM2 where they are). IRQ5 (traditional for LPT2) is often available for one of
them.

Internal modems generally present themselves as COM Ports to the computer and similarly
require their own unique settings.

Some specialized serial port hardware (multi-port boards) permit IRQ sharing among a
number of ports, these will typically have specialized driver software to manage the multiple
ports.

My modem/serial port card says it’s “Plug and Play”. What does that mean?
Plug and Play is a set of standards that allows computer systems to query devices installed in
the system and determine what they are and their capabilities. Plug and Play devices may
include items built onto the system’s main circuit board, or may include add-on cards of
various kinds.

Some add-on cards for serial ports are Plug and Play, as are many internal modems. Also
most modern computer main boards have two serial ports on-board which are often
handled by Plug and Play.

For one or two ports generally these should work as-is, but a common requirement to get
multiple ports operating correctly is to disable Plug and Play for these ports and set their
resources manually.

How do I set up those “on-board” serial ports?
If your system’s main circuit board (motherboard) features on-board serial ports, there are
generally some settings for these available in the BIOS Setup program.

The BIOS Setup program is usually accessible via a special keystroke at system start-up
(often pressing by Delete or a function key, look for a message indicating how at when your
system boots).

Accessing the Serial Port settings varies widely among BIOS models, so check your main
board or computer manual for where these might be located.

Often you can set the on-board ports for some kind of “automatic” mode, which means the
IRQ and address range are set dynamically by Plug and Play when the system starts.

Ports set up in this way will generally end up with standard IRQ and Base Address
assignments, but this is not guaranteed; and some software has problems dealing with ports
with peculiar settings.
2 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
What do I do if something isn’t working?
If you’re having problems with serial ports with hardware set IRQ and Address values (often
set by jumpers on an expansion card): make sure that each port’s settings are unique.

If you’re having problems with serial ports with Plug and Play settings: try setting the on-
board (or any other Plug and Play) ports to specific IRQs and Addresses rather than
allowing them to be determined dynamically. Using the traditional resource assignments
mentioned above is usually the best approach.

If the ports are on an expansion card then the same caveat applies as for internal modems:
make sure that the card is properly seated in the slot. If the ports are on the main board,
there are typically small cables that run from the system board to the physical port outlets
on the back of the computer. The connectors to attach the cables to the main board are often
small and are easy to not have seated properly, make sure they are oriented correctly and
well seated on the correct pins. Some port cards also use similar short cables and the same
applies to them.

Another possibility is that Windows itself has conflicting or erroneous settings for the ports.

How do I fix the Windows settings?
In Windows 9x/ME/2000, all hardware is managed through the “Device Manager.” This is
accessible in the “System” applet in Control Panel or by right-clicking on “My Computer”
and selecting “Properties”, then clicking on the “Device Manager” tab.

Look for entries under “Ports (COM & LPT)”. Clicking on one of the ports listed there and
selecting “Properties” will show an informational dialog box, the “Resources” tab has the
settings for the IRQ and Address Range. You can change the IRQ and base address settings
for these here. Setting them explicitly can sometimes help with Plug and Play conflicts.

What about TAPI?
TAPI (Telephony Application Programming Interface) is a formalized set of routines to
allow programs to make use of various telephony hardware.

Windows 95 introduced a generic implementation of TAPI that all programs could access,
enhanced versions were included in NT 4.0 and later in Windows 98/ME and 2000.

If you’re having trouble using TAPI to access or operate a particular device:

• Make sure the device actually appears in the list of TAPI devices (in the “Modems”
applet in Control Panel), if it doesn’t then it probably needs to have drivers installed.
If you know you installed the drivers already and the device has previously worked; it
may not be “visible” to the operating system for some reason, which is usually a
hardware issue, check the above sections on “The Modem Isn’t Working…” and
“The serial ports aren’t responding…” for diagnostics.
Overview: Debugging Windows Communications Programs and Communications Hardware 63

1

1

6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
• If you’re using Windows 95 you may need to obtain the updated TAPI
(UNIMODEM/V) software from Microsoft; Windows 98 and NT should already have
installed newer drivers (though it’s still sometimes prudent to check, some device
may have installed older drivers over the new ones, and Microsoft may have come out
with something new after this manual went to print).

• If you have device names that are not unique within the first 20 characters, early
versions of TAPI sometimes gets confused in device selection. Unfortunately the only
way to change the TAPI assigned names for these devices is to edit the registry or the
.INF file that is used for installing the modem. The best solution is to install the
updated TAPI drivers that don’t have this problem.

• Make sure you have installed the latest drivers (INF files) for your modem. Check the
modem manufacturer’s Web site for updated drivers.

What about WinModems?
A current trend in modem technology is to simplify the physical hardware of the modem
device and supply some portion of its functionality in the form of software drivers for the
modem. Such devices are generically referred to as “Software Modems”, and since the vast
majority of them are designed to work with some version of the Microsoft Windows
Operating System, are also frequently called “WinModems.”

This approach has made some sophisticated modem technology much cheaper to
implement, but has also brought a number of headaches.

First, these software drivers generally expose a TAPI interface, and so these modems often
must be initialized via TAPI in order to work correctly, which can cause problems with older
or otherwise TAPI naive software.

Second, the drivers for these modems are generally Operating System specific: a driver for
Win95 may not work on Win98, and almost certainly won’t on NT (much less OS/2 or
Linux). The skills necessary to write good device drivers are deep and hard won and many
drivers don’t behave entirely as advertised. Also, even if a particular Win95 driver is good, it
doesn’t mean that the NT driver for the same modem is as good (or that the manufacturer
even has one).

Often the installation software for a WinModem’s drivers will replace the default Windows
serial drivers with ones of their own. These drivers sometimes behave “unpredictably” when
accessing other serial hardware in the system.
4 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
If you’re having trouble getting a software modem (WinModem) to work:

• Make sure that the drivers are installed correctly.

• Make sure you have the latest drivers from the manufacturer.

• Make sure to open the modem using TAPI in your program.

Why am I getting leOverrun errors?
A UART overrun occurs when a character is received at the serial port before the Windows
communications driver has a chance to process the previous character. That is, characters
are coming too fast for the driver to handle them.

There is a finite limit to the speed at which a given machine can receive data. Because of the
extra layers of overhead in Windows, this limit is substantially lower than under DOS. A
baud rate that worked under DOS simply may not be achievable under Windows.

A more likely cause, however, is that another Windows task is leaving interrupts off for too
long. While interrupts are off, the communications driver isn’t notified of incoming
characters. If interrupts are left off for more than one character-time, it’s very likely that you
will lose characters due to UART overruns.

One known cause of long interrupts-off time is virtual machine creation and destruction.
The only solution is to avoid opening or closing DOS boxes during critical communication
processes.

Interrupts could also be left off by other Windows device drivers or virtual device drivers.

Why do my protocol transfers seem slow?
This usually means that your status routine is taking too much time. You shouldn’t try to do
any lengthy calculations, disk I/O, or any other time consuming activities in your status
procedure. You can test this hypothesis quickly by trying a test run without your status
procedure or with a very simple status procedure instead.

Why am I getting parity and framing errors?
Either you’re operating with a different set of line parameters than the remote device, or
your cable is picking up interference. Generally, the higher the baud rate you select, the more
likely you are to suffer from electrical interference. If you suspect that your cable is picking
up interference from other electrical sources, consider rerouting the cable run away from
such sources.
Overview: Debugging Windows Communications Programs and Communications Hardware 65

1

1

6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
My protocol transfer never gets started. What’s wrong?
This could be due to any of several problems, including mismatched line parameters, wrong
protocol selected, or the file to transmit could not be found. Your best bet is to generate a
dispatcher log and see just how far the protocol was able to progress. Also, try one of the
demonstration programs in the same situation to see if it works. Generally, this should
provide enough information to find and correct the problem.

My Zmodem file transfer program generates lots of psBlockCheckError errors and psLong-
Packet errors, but other protocols work fine. What’s going on?
The answer in this case is almost always lack of hardware flow control. The problem shows
up in Zmodem but not other protocols because Zmodem is a streaming protocol. Data is
sent in a continuous stream without pauses for acknowledgements. Flow control is required
to prevent the sender from overflowing the modem or the receiver. And remember, flow
control must be enabled at four places: your software, your modem, the remote software,
and the remote modem. See page 31 for information on flow control. Consult your modem
manual for the hardware flow control enable command for your modem.
6 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Troubleshooting a Connection Session
This topic shows some common questions and answers for troubleshooting a
communications session.

Every communications session relies on a stable connection to perform at its best. Modern
phone lines and data cables are relatively reliable, and connection parameters are somewhat
standardized, but there will come a time when nothing you do seems to work the way you
hope.

Problems with a communications session can come in many forms and at different times in
the session. The first step in troubleshooting a connection session is to make sure the
application is set up correctly for the system on which it is being run. After that, try one of
the example projects that illustrates what you are trying to do (or comes close). These
programs are used as benchmarks for further troubleshooting. Also, use one of the
communications applications installed with the operating system, HyperTerminal or
Terminal can help in identifying system setup issues.

Here are some common problems and how to resolve them.

Why do I get an exception when I try to open the TApdComPort component?
To open a port, the TApdComPort component tries to activate the serial port of the
computer identified in the TApdComPort.ComNumber property. If the port is not present
on the system, in use by another application, not correctly configured at the system level, or
the system resources are too low, the EOpenComm general exception is raised. You can trap
that exception and bring up the default Comport Selection Dialog by setting the
ComNumber property to 0 and then opening the port again.

The following example shows one way of handling this:

procedure TForm1.OpenBtnClick(Sender : TObject);
begin

while True do
try
ApdComPort1.Open := True;
Break;

except
on EOpenComm do

ApdComPort1.ComNumber := 0;
end

end;
Troubleshooting a Connection Session 67

1

1

6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Why won’t my device respond to commands?
If you send configuration and initialization commands to the device and it does not
respond, make sure the device is turned on, the necessary device drivers are loaded, any
serial cables are functional, and that you have the TApdComPort.ComNumber property
properly set. You can test the serial cable by using a different cable. Also, send the
commands in upper case and make sure the device is set up to respond with verbose results
instead of numerical codes.

Why does my mouse stop working when I open the port?
If other serial devices stop working when the port is opened, the most likely cause is an
interrupt conflict, which you will need to resolve by resetting your system’s hardware. Use
the Control Panel | System applet to resolve the conflict.

Why won’t my device dial?
If you get a “No Dialtone” message, make sure the phone cord is inserted into the correct
jack on the modem and the wall. Also make sure the cord is functional by using it with a
phone.

Why will my device dial but not connect?
If the modems start handshaking but do not complete the connection, try placing the call
again. The telephone company routes each call differently each time and you might have had
a bad connection. Call a different number or modem to verify that the local setup is correct.
Turn off Error Correction on your device.

Why do I get random or garbage characters after I have connected?
Make sure the TApdComPort.Parity, StopBits, DataBits, and Baud properties match the
system to which you are connecting. Verify that you are using the same type of flow control
on both ends of the connection.

Why, whenever I enter characters into the TAdTerminal component, are they doubled?
Turn off the Echo mode of the modem, or set the TAdTerminal.HalfDuplex property to
False.
8 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
What do I do when I have tried everything, but still nothing works?
There are a few times when changing the component properties do not seem to work. If the
phone lines are verified as being good, reset the modem before using it by sending it the
“Reset to factory defaults” command. For most modems, it is “AT&F”#13 (refer to your
modem manual for the specific command for your modem). After sending this command,
you must wait until the command has been executed by the device before sending additional
commands. The following example demonstrates one method of doing this by using the
DelayTicks function:

uses
OoMisc;

procedure TForm1.DialBtnClick(Sender : TObject);
begin

ApdComPort1.Output := 'AT&F'#13;
DelayTicks(36, True);
ApdComPort1.Output := 'ATDT 260 9726'#13;

end;

If this doesn’t work, look at the system environment. Remove any non-standard device
drivers one-by-one until the problem is eliminated. Then add the device drivers one-by-one
again until the specific driver that is causing the problem is identified. Once it is identified,
contact the device manufacturer for updated drivers. The video drivers are a good place to
start looking, so change the video mode to a standard Windows-supplied mode. Believe it
or not, this simple change has solved everything from strange displays to eliminating errors
while faxing or sending files.

Also, most Winmodem, HSP, or other software modems replace the standard serial port
drivers when they are installed. Some of these replacement drivers do not support
nonstandard port setting (anything other than 8 data bits, no parity, and 1 stop bit). To
compound the problem, there are several replacement drivers that simply ignore attempts to
change port parameters, which will result in garbled text or connection failures when non-
standard setting are used.
Troubleshooting a Connection Session 69

1

1

7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Troubleshooting a File Transfer
This topic shows some common questions and answers for troubleshooting a file transfer.

You have a stable connection, everything seems to be in order, but the file transfers aren’t
working as you’d expect.

Where do I begin?
The first step is finding out what caused the failure. To do that, look at the ErrorCode
parameter of the OnProtocolFinish event. You can get the text of the code by passing it to the
ErrorMsg method. “Undefined” error codes are usually Windows API errors. Look these up
in the Windows API help files installed with your compiler. Once you know what caused the
failure, you can usually spot the problem easily.

Why does nothing happen when I call StartTransmit or StartReceive?
If you are not already using one, drop a TApdProtocolStatus component on the form; this
provides visual feedback on the status of the transfer. If the local transfer is truly not doing
anything, then make sure the other end is set to send or receive the transfer. For example, if
you are sending a file with Zmodem, the sending machine will send “rz”#13 to let the
receiver know something is coming. If the receiver is not watching for “rz”#13, your transfer
will eventually time-out.

Why does only one OnProtocolFinish event fire when I send or receive a batch transfer?
The TApdProtocol.OnProtocolFinish event fires when the entire protocol session is
complete. In a batch transfer, the protocol session ends with the transfer of the last file in the
batch or upon a terminal error. The ErrorCode parameter of the OnProtocolFinish event
tells you what caused the termination of the entire session. To get the information for the
individual files, use the OnProtocolLog event.

Why are my transfers slow?
You first need to determine if this is a valid problem. Each character that gets transferred
takes 10 bits, so a 28,800 bps connection will result in 2,880 cps. If you think the transfers are
still slow, flow control is most likely at the root of the problem. Both sides of the transfer
need to implement the same form of flow control. Hardware flow control is preferable over
software flow control but some systems do not support it. If you are using an external
modem, make sure the cable supports hardware flow control signals. A slow transfer can
also be a sign that the connection is not stable, hang up and try the call again to see if you
can get a better connection. Other conditions that would cause slow transfers are running
other CPU intensive applications during the transfer, an overloaded protocol status event,
and frequent disk access.
0 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Troubleshooting a Fax Session
This topic shows some common questions and answers for troubleshooting a fax session.

Under normal circumstances, faxing with Async Professional is reliable, but you have been
having a hard time getting good results.

A fax connection is very similar to a data connection and a file transfer, but the faxing
protocol is more standardized throughout the communications industry. Refer to the
“Troubleshooting a Connection Session” and “Troubleshooting a File Transfer” for details
not covered here.

Why can I dial a remote fax machine, but am immediately disconnected?
Set the TApdSendFax/TApdReceiveFax.FaxClass to fcClass1. Fax Class 1 is almost
universally supported, being the base fax transfer standard. Some of the more popular fax
modems and stand-alone fax machines do not support alpha characters in the Station ID, so
you can try using numbers only. Other settings that may resolve the problem are:

• Change the ApdSendFax/ApdReceiveFax.ModemInitString to &H3&I2&R2S7=90.

• Add S36=0 to the ModemInitString.

• Lower the BPS to 7200, 4800 or 2400.

• Download the latest drivers for your device from the manufacturer.

Why are the faxes missing sections or have spots on them?
This is a result of poor phone line quality. Place the call again. Each time a call is placed the
phone company routes it differently.

Why are my received faxes elongated or shortened when I view or print them?
The TApdFaxViewer.AutoScaleMode determines whether or not the fax being viewed is
automatically scaled. If it is asNone, no scaling is done, If it is asDoubleHeight, the fax height
is stretched to twice its original size. If it is asHalfWidth, the fax width is compressed to half
its original size. The TApdFaxPrinter.PrintScale determines whether the fax is scaled to fit
the printed page or if it keeps its original dimensions. If the printed copy of the fax seems out
of proportion, set PrintScale to psNone.
Troubleshooting a Fax Session 71

1

1

7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Why do I get “Bad response from modem” errors before dialing?
This is, by far, the most common error, especially when TAPI is used to configure the
modem. There are two main causes of the problem: baud mismatch, or fax class query
confusion. If you have a baud mismatch, TAPI is configuring the modem for a different baud
than is required for faxing, and the dispatcher log will show garbled random entries. To
correct this problem, set the ComPort.Baud property to 33,600 before opening the port, and
then set it back to 19,200 in the OnTapiPortOpen event. You could also send “AT”#13 to the
modem, wait for about 1 second for a reply using DelayTicks, then call the StartXxx fax
method.

If you are suffering from the fax class query confusion problem, the dispatcher log will show
a readcom of “ERROR” after APRO sends the “AT+FCLASS=” command. The solution here
is to set the FaxClass property to a supported fax class before starting the fax.
2 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 5: Tutorials

Async Professional is unlike most other component libraries. To use the components
successfully, developers must handle different system configurations, system settings,
telephone lines, and brands of modems. This Tutorial section is designed to assist you in
getting started with the basic tasks of Async Professional. There are many topics, but Async
Professional covers a lot of programming ground.

Whether you are just starting with Async Professional or are developing advanced
applications, start with the basic tasks and move forward to the topics that apply to your
project. Keep in mind that these topics are designed to give you a head start and give you
ideas. They are not intended to be the only solutions to particular needs. You may need to
adapt them a bit to fit your situation.

In each topic, you will find the components that are required for the particular task,
prerequisite topics, other components that can help you add the finishing touches, detailed
descriptions of the steps involved, and a list of related example projects.
 73

1

1

7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Setting Up a Comport
This topic shows how to set up a serial port for serial communications.

The TApdComPort component is the basic building block of the Async Professional
component library. This component provides access to the physical serial
port/modem/device and, therefore, to the characters entering or leaving the port. Since
most of the Async Professional components rely on this component, it is essential that it is
configured correctly. Fortunately, the default properties work in most applications.

Keep in mind that this topic, along with all other topics involving the TApdComPort may
also apply to the TApdWinsockPort—particularly when the TApdWinsockPort is not
operating in Winsock mode.

Required components
TApdComPort

Prerequisite topics
None

Related components
None

What to do
The most important property of this component is the ComNumber property, which
associates the component with the desired serial port. The ComNumber property is an
Integer value. If the device you wish to use is attached to Com2, ComNumber should be 2; if
the device is on Com 4, ComNumber should be 4. If ComNumber is 0, (the default) then a
port selection dialog is shown when the port is opened. This allows the end-user to select a
port at run time. If you don’t want the user to have this level of control, then assign the
appropriate value at design time or run time before the port is opened.

Next, you need to know the line settings of the device with which you want to communicate.
Most devices use N81, which is No Parity, 8 Data bits, and 1 Stop Bit. This is the default
configuration of the TApdComPort component. If these values are not correct, change the
settings of the Parity, DataBits, and StopBits properties respectively to the proper values.
4 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The next step is to control when the port it opened with the Open property. When Open is
set to True, the port is initialized and opened. When Open is set to False, the port is closed.
The AutoOpen property determines if the port automatically opens when needed by
another Async Professional component.

Related examples
EXCOM.DPR
Setting Up a Comport 75

1

1

7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Sending Characters
This topic shows how to send characters out through the serial port.

One of the basic tasks of serial communication is sending data through the serial port. All
data that can be transmitted through the port is in the form of a sequence of characters. The
easiest way to transmit text from one system to another is to drop a TAdTerminal
component on the form. This component handles sending, receiving, and displaying of
characters for you. If you need greater control, or if you want to send characters
programmatically, then you should use the comport’s Output property.

Required components
TApdComPort

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TAdTerminal

What to do
Drop a TApdComPort component on the form and set it up for your system (see “Setting Up
a Comport” on page 74).

In your code, where you want to send the characters, assign the characters to be sent to the
TApdComPort.Output property. All the low-level tasks are automatically handled and the
characters are sent.

The following example sends “Hello world” to the remote system as a result of a button click:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdComPort1.Output := 'Hello world';
end;
6 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
If you need to transmit non-character data, such as numerical data, that data must be
converted to a character before sending. For example, if you need to send the number 6 to a
piece of equipment, you would send the character with an ordinal value of 6 (which happens
to be the ACK character). For example:

...
ApdComPort1.Output := #6

...

Related examples
EXCOM.DPR
Sending Characters 77

1

1

7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Receiving Characters
This topic shows how to receive characters through the serial port.

A typical communications session includes receiving information that is coming in through
the serial port. The easiest way to receive incoming characters is to drop a TAdTerminal
component on the form and let it handle sending and receiving the characters. However, this
method does not give you the level of control that might be needed to programmatically
handle incoming data. In those cases, you need to use the TApdComPort.OnTriggerAvail
event, which is designed just for this purpose.

Required components
TApdComPort

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TAdTerminal

What to do
Whenever characters are received at the serial port, the Windows communications driver
notifies Async Professional. When the dispatcher receives the notification, the
TApdComPort.OnTriggerAvail event fires. The number of available characters is passed in
the Count parameter of the event handler. Inside this event your code should retrieve exactly
Count characters with the TApdComPort.GetChar method.

Due to the event-driven nature of the Windows communications drivers, the number of
available characters fluctuates during the program’s execution. In light of this, your code
should retrieve all Count characters into a buffer, then process the buffer. If necessary, the
code can check individual characters, or the entire buffer, as characters are retrieved from
the dispatcher buffer (using the GetChar method).
8 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example retrieves characters from the dispatcher buffer, puts them into a
buffer, and changes the caption when “Hello” is received:

var
Buffer : string[255];
BufferIndex : Integer;

procedure TForm1.ApdComPort1TriggerAvail(
CP : TObject; Count : Word);

var
I : Word;
C : Char;

begin
for I := 1 to Count do begin

C := ApdComPort1.GetChar;
if C = #7 then
MessageBeep(0)

else if C in [#32..#126] then begin
Buffer := Buffer + C;
if (Pos('Hello', Buffer) > 0) then

Caption := 'Got Hello';
end;

end;
end;

Related examples
EXCOM.DPR
Receiving Characters 79

1

1

8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Detecting a Specific String in the Data Stream
This topic shows how to detect a string, individual character, or sequence of characters that
have been received at the serial port.

Detecting specific strings or characters in the incoming data stream is an integral part of
most communications applications. Whether you are automating a logon session, getting
data from a monitoring instrument, or creating a custom file transfer protocol, your code
needs to detect specific strings or individual characters and handle them. There are several
ways to do this: monitor all incoming characters in the OnTriggerAvail event and parse the
accumulated characters, use DataTriggers, or use the TApdDataPacket component. The
TApdDataPacket component is the easiest to use, since the majority of the work can be done
at design time.

Required components
TApdComPort

TApdDataPacket

Prerequisite topics
“Setting Up a Comport” on page 74.

“Sending Characters” on page 76.

Related components
None

What to do
Drop a TApdDataPacket component on the form and right-click it. Select the Edit
Properties item to display the TApdDataPacket property editor (you can also edit the
properties in the Object Inspector, but this property editor makes things much simpler).
Enter the string or character for which the program must look in the “When this string is
received” edit box. When that string or character is detected, the OnPacket and/or
OnStringPacket events fire, depending on which events are declared. The OnPacket event
passes a pointer to the packet data and the OnStringPacket event passes the data in a string.
Either event can be used to notify your application that the data was detected.
0 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The string can include both control and alpha-numeric characters. When you enter an
alpha-numeric string, the property editor works like any other string editor. When you enter
a control character, enter ‘#’ character followed by the decimal value of the character or the
‘^’ character followed by an alpha-character. If you need to mix alpha-numeric and control
characters, put the alpha-numeric characters in single quotes. For example:

Searching for an alpha-numeric string
In the property editor, enter the string without quotes. In your code, assign the string inside
single quotes to the property.

ApdDataPacket1.StartString := 'Hello';

Searching for a control character/characters
In the property editor enter “#X”, where X is the decimal value of the character, or “^X”
where X is the control-key combination. Do not use quotes. In your code, the same rule
applies.

ApdDataPacket1.StartString := #2;
ApdDataPacket1.EndString := ^B;

Searching for an alpha-numeric string with control characters
In the property editor enter the string within single quotes and the control characters
without quotes. Do the same in your code.

ApdDataPacket1.StartString := 'Hello'#2;
ApdDataPacket1.StartString := 'Hello'#13'World'#13;

Here are the steps for a quick example that detects when “OK” is received:

Drop the following components on the form: TApdComPort, TAdTerminal,
TApdDataPacket, and TButton. Right-click the TApdDataPacket component and enter
“OK” (without the quotes) in the “Received string” edit control. Double click the
TApdDataPacket component to create the OnPacket event. Add the following line:

Caption := 'Received OK';

Now, double-click the button to create its OnClick event handler. In this example, we’ll send
the “ATZ” command to the modem (the default initialization command for most modems).
Add the following line to the OnClick event handler:

ApdComPort1.Output := 'ATZ'#13;

Compile and run the application. Select the comport to which your modem is attached and
then click the button. The modem is sent the “ATZ” command and should respond with
“OK”. If so, the OnPacket event fires and the form’s caption changes to “Received OK”.
Detecting a Specific String in the Data Stream 81

1

1

8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Related examples
QRYMDM.DPR

EXWPACKT.DPR
2 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Detecting a Packet
This topic shows how to detect packets (i.e., specific sequences of characters).

Many times, the data you’re trying to collect during a communications session is in the form
of a data packet. A data packet can be defined as any sequence of characters. It can be a
specific character/string, be bracketed between two known characters/strings with the data
having an unknown length, start with a known character/string and have a known length,
or end with a known character/string and have a known length. These types are all
addressed in this topic.

Required components
TApdComPort

TApdDataPacket

Prerequisite topics
“Setting Up a Comport” on page 74.

“Sending Characters” on page 76.

“Detecting a Specific String in the Data Stream” on page 80.

Related components
None

What to do
The TApdDataPacket component can handle several forms of packet structures. There are
only a few possible structures that would be of any use and they are described below. If your
application is trying to monitor, filter, or process incoming data, that data will be in one of
the following forms:

1. A specific character/string. For example, the Zmodem auto-receive message would
look something like: ‘rz’#13. This is the most common usage and can be thought of as
an enhanced DataTrigger from previous versions of Async Professional. The packet is
defined by its own StartString, so it is easy to detect. Set StartCond to scString and
StartString to ‘rz’#13. When this string is detected the OnPacket and OnStringPacket
events are fired.
Detecting a Packet 83

1

1

8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
2. A bracketed packet. This is when the data characters are bracketed between two
known characters (e.g., <STX>‘XXXX’<ETX>). In this case, the packet starts with the
STX character (#2) and ends with the ETX character (#3). “XXXX” represents an
unknown number of characters. To detect this type of packet, set the StartCond to
scString, StartString to “#2”, EndCond to [ecString] and EndString to “#3” (without
the quotes). When StartString is detected, all following characters are saved in the
TApdDataPacket component’s buffer. When EndString is detected, the OnPacket and
OnStringPacket events are fired. The OnPacket event passes a pointer to the bracketed
characters while the OnStringPacket passes a string containing the bracketed
characters.

3. A known start character or string followed by data of known length. An example
might be <STX>”XXXX.” Here, the packet starts with the STX character (#2) and
contains a sequence of characters of four characters (represented by ‘X’). To detect this
packet, set the StartCond to scString, StartString to “#2” (without the quotes),
EndCond to [ecPacketSize] and PacketSize to the length of the data packet. When
StartString is detected, the following PacketSize characters are saved in the
TApdDataPacket component’s buffer. Once the specified number of characters is
received, the OnPacket event, or the OnStringPacket event, or both, fire.

4. A known number of characters followed by a terminating character, e.g.,
“XXXX”<ETX>. This packet can start at any time in the communications session, and
is defined by the terminating character or string. To detect this type of packet, set
StartCond to [scAnyData], EndCond to [ecString] and EndString to “#3” (without the
quotes). When the EndString character or string is detected, the OnPacket and
OnStringPacket events fire. Your code must then extract the expected number of
characters from the buffer.

Since all characters preceding the EndString are placed in the TApdDataPacket
component’s buffer, this type of packet can be error-prone, especially if the packet for
which you are looking follows other data or information. In this case, you must enable
the TApdDataPacket component by setting TApdDataPacket.Enabled property to True
just prior to when the data is expected.

Related examples
EXWPACKT.DPR

QRYMDM.DPR
4 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Selecting and Configuring a Modem
This topic shows how to select and configure a modem that is attached to a comport.

Configuring a modem is a very important process in a communications application. The
modem has to be properly configured for it to accept the commands and return the
appropriate response strings, as well as configuring the protocol negotiations.

Usually, the services provided by TAPI are adequate. TAPI will configure the modem and
establish a connection based on the modem’s property dialog settings. Under some
requirements, TAPI does not provide the flexibility needed. Consider a connection where
non-standard line settings are required, such as 7 data bits instead of 8. TAPI, by default, will
configure the line settings for 8N1. To use something other than that, the modem properties
dialog will need to be displayed, the settings changed, then the connection can be made. The
TAdModem component provides an alternate technique which can be implemented without
user interaction.

Required components
TApdComPort

TAdModem

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TApdTapiDevice

What to do
The TAdModem provides access to a few thousand modem configuration structures, which
define the commands and responses to configure an equal number of modems. The modem
configuration structures are accessed through the TApdLibModem class, which is discussed
in the next tutorial, for our purposes now we just need to know it is there, but we do not
need to know any particulars about it.

The TAdModem has properties, events and methods that are similar to the
TApdTapiDevice. The SelectedDevice property contains information about the name,
manufacturer which file contains the modem configuration structure. The SelectDevice
method invokes a modem selection dialog box where a modem can be selected. The
Selecting and Configuring a Modem 85

1

1

8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ConfigAndOpen method configures the modem without establishing a connection. The
Dial and AutoAnswer methods configure the modem then establish a connection by either
dialing or answering. The CancelCall method cancels whatever the TAdModem is doing.

One of the benefits of the TAdModem over the TApdTapiDevice is that the serial port is
accessible before the connection is made. When dialing or answering with TAPI, the serial
port is valid only after the connection has been made. Since the connection is already
established, the line settings have already been negotiated, and that is too late for most
circumstances. The serial port is accessible at practically any time with the TAdModem
component, so the line settings can be changed before the connection is established.

Consider our non-standard line settings from above. All you need to do is set the
TApdComPort properties according to the line settings you need, then use the Dial or
AutoAnswer methods of the TAdModem class to establish the connection.

Related examples
EXMDM.DPR
6 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
LibModem
The TAdModem uses LibModem to access the modemcap modem database. The
modemcap modem database is a TurboPower initiative to provide modem configuration
information outside of TAPI. Modemcap consists of XML documents, which contain
modem configuration and operational commands and responses. The format is very similar
to the modem’s .INF files, which TAPI uses for the same purposes.

LibModem (through the TApdLibModem component) provides access to modemcap to
add, delete and modify the modem definitions contained in modemcap.

Required components
TApdLibModem

Prerequisite topics
None

Related components
TAdModem

TApdTapiDevice

What to do
The modemcap database consists of modem configuration information, which was
extracted from the Windows modem INF database. This creates a very large database, and it
is likely that you will not want to distribute the default database. There are essentially three
alternatives, either distribute a subset of the database, or distribute a shell and let the user
add modem information, or a combination of these.

Accessing modemcap
The modemcap database is accessed through the TApdLibModem. The TAdModem
component provides limited modemcap support, primarily for selecting and retrieving the
modem details. TApdLibModem provides methods for adding new modems, deleting and
editing existing modems, and for creating new modem detail files. To illustrate how to use
the TApdLibModem class, we will create a program that will extract modem details from
modemcap, put them in a single modem detail file, then select the details from the new,
consolidated file. To do this, create a new project and keep reading.
LibModem 87

1

1

8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
You will need to have an instance of the TApdLibModem class, so add “AdLibMdm” to your
uses clause and the following to the form’s declaration:

type
TForm1 = class(TForm)

...
public

LibModem : TApdLibModem;
end;

Create the form’s OnCreate event handler and add the following to create the LibModem
instance:

...
LibModem := TApdLibModem.Create(Self);

...

Free LibModem when the form is freed also, so create the OnDestroy event handler and free
the class from there.

Drop a TListBox component on the form and set the Name property to lbxManufacturers.
Drop a TButton component on the form and create the OnClick event handler. In the
OnClick method, use the GetModemRecords method of the TApdLibModem to retrieve a
collection of all of the modems, and then add the modem manufacturer names to the list
box. GetModemRecords returns a TApdLmModemCollection, which is a collection of
modem records. Add the following to your form’s declaration under the LibModem added
earlier:

...
ModemColl : TApdLmModemCollection;

...
8 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Create the button’s OnClick event handler and add the following. Since we want this list box
to contain the modem manufacturers, there is code to prevent duplicates.

procedure TForm1.Button1Click(Sender: TObject);
var

I : Integer;
Manufacturer : string;

begin
LibModem.LibModemPath := {add the path to modemcap};
ModemColl := LibModem.GetModemRecords;
lbxManufacturers.Items.Clear;
for I := 0 to pred(ModemColl.Count) do begin

Manufacturer := ModemColl[I].Manufacturer;
if lbxManufacturers.Items.IndexOf(Manufacturer) = -1 then
lbxManufacturers.Items.Add(Manufacturer);

end;
end;

You now have something that can be compiled and executed, go ahead and do that now.
When you click the button, the list box is filled with all of the manufacturers contained in
modemcap.

The next thing to do is display a list of modems from a selected manufacturer. Drop another
TListBox on the form and change the name to lbxModels. Populate this list when a
manufacturer name is selected in the lbxManufacturers TListBox, so create the OnClick (or
OnSelected) event handler of the lbxManufacturers component and add the following:

procedure TForm1.lbxManufacturersClick(Sender: TObject);
{ displays all modems from the selected manufacturer }

var
I : Integer;

begin
if lbxManufacturers.ItemIndex > -1 then begin
lbxModels.Items.Clear;

for I := 0 to pred(ModemColl.Count) do
if ModemColl[I].Manufacturer =

lbxManufacturers.Items[lbxManufacturers.ItemIndex] then
lbxModels.Items.Add(ModemColl[I].ModemName);

end;
end;

This event handler will iterate through the collection of modem records and add the names
of the manufacturer’s modems to the second list box. You can compile and execute the
project now and see the list of manufacturers, when you select one of them the second list
box displays modems by that manufacturer.
LibModem 89

1

1

9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The final step in our little project is to select a modem from the second list box, extract the
modem details and add them to a new detail file. To do this, create the OnDblClick event
handler for the lbxModels TListBox. In this method, create load the selected modem’s
details, and then save them to another file.

procedure TForm1.lbxModelsDblClick(Sender: TObject);
var

LmModem : TLmModem;
ModemName : string;
SourceDetailFile : string;
I : Integer;

begin
if lbxModels.ItemIndex > -1 then begin

ModemName := lbxModels.Items[lbxModels.ItemIndex];
for I := 0 to pred(ModemColl.Count) do
if ModemColl[I].ModemName = ModemName then begin

SourceDetailFile := ModemColl[I].ModemFile;
Break;

end;
LibModem.GetModem(SourceDetailFile, ModemName, LmModem);
LibModem.AddModem('mymodems.xml', LmModem);

end;
end;

This project can be used to create a “installed modems” detail file, which can then be used
without the rest of the modemcap database.

Related examples
EXMDM.DPR

EXMDMCAP.DPR

EXLIBMDM.DPR
0 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Configuring a TAPI Device
This topic shows how to perform custom configuration for a TAPI device.

One of the best reasons to use TAPI to configure a device is that the operating system
maintains the list of commands and responses so the same code-base can communicate
seamlessly with a wide variety of modems. What could be simpler than the operating system
maintaining the modem’s configuration? Most of the time, this is a much better solution
than having to maintain a separate list of modems and modem configuration; but what can
you do if the configuration supplied from the operating system doesn’t work with your
requirements?

Required components
TApdTapiDevice

Prerequisite topics
“Selecting and Configuring a Modem” on page 85.

Related components
None

What to do
The normal configuration for a TAPI device is good for normal connections (i.e., 8 data bits,
no parity, 1 stop bit, hardware flow control, etc.). Each time the ApdTapiDevice opens the
physical serial port, the normal TAPI configuration is forced on the TApdComPort. Let’s say
you need to connect to a 7E1 host—how can you do that if TAPI is forcing 8N1? Well, you
have to change the configuration before TAPI makes the connection.

TAPI uses an opaque structure to contain the configuration for the device. This means that
you can’t change anything in that structure directly, and it will probably change from one
modem to the next. You will need to get the configuration from TAPI through the Modem
Properties dialog, let the user change the properties to match your configuration
requirements, then save the configuration structure. Each time you need to use the
configuration for that modem, load the configuration structure and apply it to the TAPI
device. You’ll find detailed steps below, but first let’s talk a bit about the structures and
methods that Async Professional’s TApdTapiDevice gives you.

The TTapiConfigRec record is designed to hold the TAPI configuration structure.
Configuring a TAPI Device 91

1

1

9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The GetDevConfig method gives you the current configuration structure.

The SetDevConfig method forces a new configuration structure on the TAPI device.

The ShowConfigDialogEdit method displays the Modem Properties dialog and gives you
the changed configuration.

The first thing to do is select the device that you want to modify by setting the
TApdTapiDevice.SelectedDevice property. Next, show the Modem Properties dialog box
with the current configuration and get the modified configuration back from TAPI. Finally,
save the modified configuration so you can load it in the future. Since TAPI devices can be
added or removed, it is a good idea to keep track of the modem’s name so you don’t
accidentally use the wrong configuration structure. The following example shows how to do
it:

procedure TForm1.ReconfigureTheTapiDevice;
var

CfgRec : TTapiConfigRec;
Reg : TRegistry;

begin
{ Initialize the record with current config, show config dialog

and store the result }
CfgRec := ApdTapiDevice.ShowConfigDialogEdit(

ApdTapiDevice.GetDevConfig);

{ Set the device configuration with the result from the dialog }

ApdTapiDevice.SetDevConfig(CfgRec);

{ Save the new configuration to the registry. This assumes a key
of 'Software\MyApp' exists, each TAPI device that is
configured will have it’s own key named the same as the
device name }

Reg := TRegistry.Create;
try

Reg.OpenKey(
'Software\MyApp' + ApdTapiDevice.SelectedDevice, True);

Reg.WriteBinaryData(
'TapiConfig', CfgRec.Data, CfgRec.DataSize);

finally
Reg.Free;

end;
end;
2 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
To load the configuration when you need it, do something like this:

procedure TForm1.ConfigureTheDevice;
var

CfgRec : TTapiConfigRec;
Reg : TRegistry;

begin
{ Clear record }
FillChar(CfgRec, SizeOf(CfgRec), #0);

{ Make sure we have selected a valid TAPI device }

if (ApdTapiDevice.SelectedDevice = '') or
(ApdTapiDevice.TapiDevices.IndexOf(
ApdTapiDevice.SelectedDevice) = -1) then

ApdTapiDevice.SelectDevice;

{ Get configuration from registry }
Reg := TRegistry.Create;
if Reg.KeyExists(

'Software\MyApp' + ApdTapiDevice.SelectedDevice) then begin
try
Reg.OpenKey('Software\MyApp' +

ApdTapiDevice.SelectedDevice, False);
CfgRec.DataSize := Reg.ReadBinaryData('TapiConfig',

CfgRec.Data, SizeOf(CfgRec.Data));
finally
Reg.Free;

end;
{ Set the device configuration }
ApdTapiDevice.SetDevConfig(CfgRec);

end else
{ This modem hasn’t been added, so we need to show the dialog

and add the custom configuration }
ReconfigureTheTapiDevice;

end;

Related examples
EXTCONFG.DPR
Configuring a TAPI Device 93

1

1

9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Dialing
This topic shows how to dial a phone number through a modem or similar device.

Sooner or later, you’ll probably want to dial a modem and connect to another system. This
can be done quite easily with Async Professional, but the exact commands to use will
depend on which components are used to control the port.

Required components
TApdComPort

TApdTapiDevice

Prerequisite topics
“Setting Up a Comport” on page 74.

“Sending Characters” on page 76.

“Selecting and Configuring a Modem” on page 85.

Related components
TApdModemDialer

TApdDialerDialog

What to do
TApdComPort
If you are establishing a connection without a TApdTapiDevice component, then you or
your code must send commands to the port directly (how you would do it is covered later).
The usual AT modem command for dialing is “ATDT” for tone dialing and “ATDP” for pulse
dialing. To perform a tone dialing of “260-9726” your code would look something like:

ApdComPort1.Output := 'ATDT 260 9726'#13;

When the remote answers, and the modems negotiate a mutually supported connection
type, the modem will return “CONNECT.” You can use a TApdDataPacket component to
detect the connect message.
4 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
TAdModem and TApdTapiDevice
The TAdModem and TApdTapiDevice components each have a method called Dial that
dials a given number. The TAdModem.Dial method will configure the modem, then dial the
number specified by the PhoneNumber property. The TApdTapiDevice.Dial method tells
TAPI to configure the modem and dial the number specified by the parameter for the
method.

AdModem1.Dial ('555 1212');

or

ApdTapiDevice1.Dial ('555 1212');

The phone numbers used for these methods will dial the given phone number, without
regard to the TAPI location settings (dial ‘9’ for an outside line, long distance prefixes, etc.).
The TAdModem will need those modifications made manually. With TAPI, the
TApdTapiDevice.TranslateAddress method will convert the phone number for you.

When the TAdModem component detects that the modem is connected, the
OnModemConnect event is generated. When TAPI detects that the connection is made, the
OnTapiConnect and OnTapiPortOpen events will fire.

Related examples
ApdTapiDevice
EXTAPID.DPR

EXSMODEM.DPR
Dialing 95

1

1

9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Monitoring the Progress of a Dial Attempt
This topic shows how to keep track of what is happening after a dial command is executed
up to the time the connection is established.

Simply dialing is usually not enough to do anything in a communications application;
eventually, you’ll want to do something once the connection is made. The TApdTapiStatus
component gives the user a visual indication of the dialing status, but they provide little
feedback to what’s happening in your application. Fortunately, the TApdTapiDevice
component supplies events that fire throughout the connection process and give you the
means of providing feedback to the user.

Required components
TApdComPort

TApdTapiDevice (32-bit)

Prerequisite topics
“Setting Up a Comport” on page 74.

“Selecting and Configuring a Modem” on page 85.

“Dialing” on page 94.

Related components
TApdTapiStatus

What to do
TApdTapiDevice
Unlike the TApdSModem component, the TApdTapiDevice component relies on TAPI to
provide the connection information. After you execute the Dial method, the
OnTapiConnect event fires to notify your application of a successful connection. If the
connection attempt failed, the OnTapiFail event fires. For specific information about the
connection attempt, use the OnTapiStatus event. There are several parameters passed in this
event, but only a few are used in this particular case. The First and Last parameters are True
on the first and the last status event for the current call respectively. The Message parameter
6 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
provides the category of the status change, Param1 defines the specific change, and Param 2
defines extended information. The following example dials a number and uses the
OnTapiStatus event to update a label.

procedure TForm1.DialBtnClick(Sender : TObject);
begin

ApdTapiDevice1.Dial('260 9756');
end;

procedure TForm1.ApdTapiDevice1TapiStatus(
CP : TObject; First, Last : Boolean; Device, Message, Param1,
Param2, Param3 : Integer);

begin
if First then

Label1.Caption := 'Got first status message'
else if Last then

Label1.Caption := 'Got last status message'
else

Label1.Caption :=
ApdTapiDevice1.TapiStatusMsg(Message, Param1, Param2);

end;

Related examples
ApdTapiDevice
EXTAPID.DPR
Monitoring the Progress of a Dial Attempt 97

1

1

9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Terminating a Connection
This topic shows how to terminate a connection by hanging up the device/modem.

Now that you know how to connect to another system, you need to know how to disconnect
from it (think of the phone bill otherwise). If you are using the TApdComPort component
directly, you can just set the Open property to False to terminate the connection, but that is
about as elegant as unplugging the phone line if you are using the TApdSModem or
TApdTapiDevice components.

Required components
TApdComPort

TAdModem

TApdTapiDevice

Prerequisite topics
“Setting Up a Comport” on page 74.

“Dialing” on page 94.

Related components
None

What to do
The TApdTapiDevice.CancelCall and TAdModem.CancelCall methods terminate either a
dialing attempt or an established connection. When CancelCall is executed, a request is sent
to TAPI. CancelCall will return once the call has been cancelled, which could be
immediately or can take a few seconds, depending on how responsive TAPI is at the time the
request was made. The OnTapiPortClose event will fire if the port has been opened (if you
had an OnTapiPortOpen event previously for this call). The OnTapiFail event will also fire if
8 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
a connection attempt has been made. The TApdTapiDevice.Cancelled property will be True
in the OnTapiFail event if you called CancelCall. It will be False otherwise. The following
example terminates a TAPI call.

procedure TForm1.HangupBtnClick(Sender : TObject);
begin

ApdTapiDevice1.CancelCall;
end;

procedure TForm1.ApdTapiDevice1TapiFail(Sender : TObject);
begin

if ApdTapiDevice1.Canceled then
{ Cancelled the call }

else
{ TAPI detected a failure }

end;
end;

procedure TForm1.ApdTapiDevice1TapiPortClose(Sender : TObject);
begin

{ TAPI has now terminated the connection, do any cleanup
routines }

end;

Related examples
EXTAPID.DPR
Terminating a Connection 99

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Sending Files
This topic shows how to send text or binary files to a remote system via a serial connection.

You can connect to another system, send and receive characters and strings, and terminate
that connection, but what if you needed to send files? File transfers are generalized under the
term Protocol Transfers. A protocol is simply an established method of communication. In a
file transfer the communication is the contents of the file. Included in the protocol are
specific strings or characters that handle errors in the transfer, file information and
handshaking. For most cases, Zmodem is the protocol of choice as it offers speed, reliability,
and convenience.

Required components
TApdComPort

TApdProtocol

Prerequisite topics
“Setting Up a Comport” on page 74.

“Dialing” on page 94.

Related components
TApdProtocolStatus

TApdProtocolLog

What to do
The TApdProtocol component can be used with a connection made with a TApdSModem,
TApdTapiDevice, TApdWinsockPort, or a TApdComPort component. The first thing to do
is to select which protocol you want to use. For most cases, Zmodem is your best choice, and
it is the default in the ProtocolType property. The default property values are also
appropriate for most transfers.

The next step is to determine which file or files are to be sent. If you are sending a single file,
enter the path and file name in the FileMask property. If you are sending multiple files, enter
a DOS file mask that identifies the files. The DOS file mask can contain wildcards (e.g.,
.TXT, REPORTS., or *.*, etc.).
00 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
If the files can not be described with a file mask, or you are using a non-batch protocol such
as XModem, use the OnProtocolNextFile event to specify the files. The OnProtocolNextFile
event fires immediately following a call to StartTransmit, and after each file is sent. Set the
FName parameter to the path and file name of the file to be sent. To signal the end of the files
to be transferred, set the FName parameter to an empty string. Don’t enter anything in the
FileName property as that is relevant only for protocol receiving. Also, the FileMask
property is ignored when the OnProtocolNextFile event is used.

To start the transfer, call the StartTransmit method. When the transfer is complete, the
OnProtocolFinish event is fired. To see how the transfer is going, drop a TApdProtocolStatus
component on the form. It is displayed automatically when StartTransmit is called. The
OnProtocolFinish event fires when all files specified in the FileMask property or from the
OnProtocolNextFile event have been sent. The ErrorCode parameter is 0 if the transfer
session was successful. The OnProtocolFinish event fires only after all files have been sent.
Therefore, it should not be used to determine the status of individual files. For that purpose,
use the OnProtocolLog event which fires at the start and end of transmission of each file,
successful or not. The Log parameter of the OnProtocolLog event provides the state of the
transfer.

The following example sends a single file selected from an OpenFile dialog, which is invoked
in the SendFileBtnClick event, or sends all files in the “C:\SEND” directory from the
SendAllFilesBtnClick event. The status of each file sent is added to a TMemo.Lines string list
in the OnProtocolLog event so you can see the progress of the transfer.

procedure TForm1.SendFileBtnClick(Sender : TObject);
begin

OpenDialog1.FileMask := 'All files (*.*)|*.*';
if OpenDialog1.Execute then begin

ApdProtocol1.FileMask := OpenDialog1.FileName;
ApdProtocol1.StartTransmit;

end;
end;

procedure TForm1.SendAllFilesBtnClick(Sender : TObject);
begin

ApdProtocol1.FileMask := 'C:\SEND*.*';
ApdProtocol1.StartTransmit;

end;
Sending Files 101

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
procedure TForm1ApdProtocol1ProtocolLog(
CP : TObject; Log : Word);

begin
case Log of

lfTransmitStart : Memo1.Lines.Add(
ApdProtocol1.FileName + ' : started');

lfTransmitOK : Memo1.Lines.Add(
ApdProtocol1.FileName + ' : sent OK');

lfTransmitFail : Memo1.Lines.Add(
ApdProtocol1.FileName + ' : failed');

lfTransmitSkip : Memo1.Lines.Add(
ApdProtocol1.FileName + ' : rejected');

end;
end;

procedure TForm1.ApdProtocol1ProtocolFinish(
CP : TObject; ErrorCode : SmallInt);

begin
ShowMessage('File transfer complete');

end;

The following example sends all the files selected from an OpenFile dialog (configured to
accept multiple files), updates a status label with the status of the current file, and shows a
message once all files have been transferred. The list of files to be sent is maintained in a
TMemo and, as each file is transmitted, its name is removed from the list. Once all files are
transferred, the protocol transfer is complete.

procedure TForm1.SendFilesBtnClick(Sender : TObject);
begin

OpenDialog1.FileMask := 'All files (*.*)|*.*';
OpenDialog1.Options := [ofAllowMultiSelect];
if OpenDialog1.Execute then begin

Memo1.Lines.Clear;
Memo1.Lines := OpenDialog1.Files;
ApdProtocol1.FileMask := Memo1.Lines[0];
Memo1.Lines.Delete(0);
ApdProtocol1.StartTransmit;

end;
end;

procedure TForm1.ApdProtocol1ProtocolNextFile(CP : TObject;
var FName : TPassString);
02 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
begin
if Memo1.Lines.Count > 0 then begin

FName := Memo1.Lines[0];
Memo1.Lines.Delete(0);

end;
end;

procedure TForm1.ApdProtocol1ProtocolLog(
CP : TObject; Log : Word);

begin
case Log of

lfTransmitStart : Status.Caption :=
'Sending ' + ApdProtocol1.FileName;

lfTransmitOK : Status.Caption :=
ApdProtocol1.FileName + ' sent OK';

lfTransmitFail : Status.Caption :=
ApdProtocol1.FileName + ' failed';

end;
end;

procedure TForm1.ApdProtocol1ProtocolFinish(
CP : TObject; ErrorCode : SmallInt);

begin
ShowMessage('File transfers complete');

end;

Related examples
EXPROT.DPR

EXZSEND.DPR
Sending Files 103

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Receiving Files
This topic shows how to receive text or binary files from a remote system via a serial
connection.

There are many situations where the information you want to get from the remote is in a file.
The TApdProtocol component can receive these files as well as send them. Again, Zmodem
is the preferred protocol—offering speed, robustness, and convenience. The Zmodem
sender also passes the file name of the file being transferred.

Required components
TApdComPort

TApdProtocol

Prerequisite topics
“Setting Up a Comport” on page 74.

“Detecting a Specific String in the Data Stream” on page 80.

Related components
TApdProtocolStatus

TApdProtocolLog

What to do
The TApdProtocol component can be used with a connection made with a TApdSModem,
TApdTapiDevice, TApdWinsockPort, or a TApdComPort component. The first thing to do
is to select which protocol to use. For most cases, Zmodem is your best choice, and it is the
default in the ProtocolType property. The default property values are also appropriate for
most transfers.

The Zmodem sender typically sends ‘rz’#13 (which stands for “receive zmodem”) to initiate
the transfer; this makes Zmodem the easiest protocol to implement. When StartReceive is
called, the TApdProtocol component waits for the ‘rz’#13 string and starts receiving the file
or files once that string is detected. The other protocols must be started explicitly at the
appropriate time.
04 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
For protocols that support batch transfers, e.g., Zmodem, Ymodem, YmodemG, and
Kermit, several files can be transmitted in one session. The OnProtocolFinish event fires
when all files have been received. The OnProtocolLog event fires at beginning and end of
transmission for each individual file.

The following example receives either a single file or a batch of files. As each file is
transmitted, a status label is updated. When the file transmission is complete, the file name
is added to a TMemo. Once the file or files are transferred, a message is displayed.

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdProtocol1.StartReceive;
end;

procedure TForm1.ApdProtocol1ProtocolLog(
CP : TObject; Log : Word);

begin
case Log of

lfReceiveStart : Status.Caption :=
'Receiving ' + ApdProtocol1.FileName;

lfReceiveOK : Memo1.Lines.Add(
ApdProtocol1.FileName + ' received OK');

lfReceiveFail : Memo1.Lines.Add(
ApdProtocol1.FileName + ' failed');

end;
end;

procedure TForm1.ApdProtocol1ProtocolFinish(
CP : TObject; ErrorCode : Integer);

begin
ShowMessage('Transfer complete');

end;

Related examples
EXZRECV.DPR
EXZRECV.DPR 105

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Sending and Receiving Faxes on the Same Line
This topic shows how to send a fax while waiting to receive a fax.

A very popular usage of the APRO fax components is to use a single line to receive faxes, and
send faxes using the same line. The TApdReceiveFax component traditionally opened the
serial port for exclusive access while it waited for an incoming call. When the
TApdReceiveFax component was waiting, the port could not be used by the TApdSendFax
component. The integration of TAPI with the TApdReceiveFax component greatly simplifies
this design.

Required components
TApdComPort

TApdSendFax

TApdReceiveFax

TApdTapiDevice

Prerequisite topics
“Configuring a Device for Faxing” on page 142

“Sending Faxes to One Recipient” on page 143

“Receiving Faxes” on page 150

Related components
TApdFaxStatus

TApdFaxLog

What to do
The TApdReceiveFax and TApdSendFax components are TAPI aware, and can use the
services provided by TAPI. TAPI is capable of monitoring a device for incoming calls, while
permitting other TAPI processes to access the port. If the TapiDevice property of the
TApdReceiveFax component is assigned, a call to the StartReceive method will begin passive
monitoring of the line. When TAPI detects an incoming call, the TApdReceiveFax
component will acquire the port, receive the fax, and return to passively monitoring for
more calls.
06 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
To illustrate this, create a new project and drop a TApdComPort, TApdTapiDevice, and
TApdReceiveFax on the form. Set the TapiDevice property of the TApdReceiveFax
component to the TApdTapiDevice, which will enable TAPI integration. Drop the obligatory
TButton on the form and add the following code:

procedure TForm1.Button1Click(Sender: TObject);
begin

ApdReceiveFax1.StartReceive;
end;

When this is executed, the TApdTapiDevice will enter “autoanswer” mode and wait for
incoming calls. Once TAPI has detected the appropriate number of ring signals, the
TApdReceiveFax component will take over and answer the call.

To add fax-sending capabilities, drop another TApdComPort and another TApdTapiDevice
and a TApdSendFax component on the form. Make sure that the new TApdTapiDevice’s
ComPort property is pointing to the new TApdComPort; and that the ComPort and
TapiDevice properties of the TApdSendFax are pointing to the new components also. Drop
another button on the form and add the following to the new button’s OnClick event
handler:

procedure TForm1.Button2Click(Sender: TObject);
begin

if ApdReceiveFax1.InProgress then begin
ShowMessage('Receiving a fax, try again later');
Exit;

end;
ApdSendFax1.PhoneNumber := '555 1212';
ApdSendFax1.FaxFile := 'c:\default.apf';
ApdSendFax1.StartTransmit;

end;

The InProgress property of the TApdReceiveFax will be True when the component is
actually receiving a fax, and False when waiting for an incoming call. Check InProgress to
make sure the line is available for sending.

To make the TApdSendFax and TApdReceiveFax components work together through TAPI,
their TapiDevice properties must be pointing to separate TApdTapiDevice components, and
the SelectedDevice properties of the TApdTapiDevice components must be pointing to the
same TAPI device.

Related examples
EXTAPIFAX.DPR
Sending and Receiving Faxes on the Same Line 107

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Inserting a Delay
This topic shows how to delay execution of the next statement or section in your code for a
specified amount of time.

Even though working in the event-driven environment of Windows, there may come a time
when you want to momentarily pause execution of your application. One example of this is
if you send a command to a modem and need to wait for the command to be processed, but
do not want to set up a TApdDataPacket component or DataTrigger for a single use.

Required components
None

Prerequisite topics
None

Related components
None

What to do
There are several useful utilities provided with Async Professional. Perhaps the most useful
is the DelayTicks function in the OOMISC.PAS unit. This function pauses execution of your
code for a specified number of clock ticks. Before trying to use this function, you must
include “OoMisc” to the uses clause of the unit that calls DelayTicks. The function takes two
parameters, Ticks and Yield, and returns a LongInt.

function DelayTicks(Ticks : LongInt; Yield : Bool) : LongInt;

Ticks is the number of clock ticks for which to delay. There are about 18 clock ticks per
second. Yield determines whether DelayTicks prevents other tasks from executing, or if it
delays execution only within the current method. For most cases, you can disregard the
result of this function. However, for the record, the low word of the result is the last
Windows message number and the high word is the windows handle that received the
message.
08 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example sends an Init command to a modem, pauses for 2 seconds, and then
sends a dial command:

procedure TForm1.ConfigAndDialBtnClick(Sender : TObject);
begin

ApdComPort1.Output := 'ATZ'#13;
DelayTicks(36, True);
ApdComPort1.Output := 'ATDT 260 9726'#13;

end;

Related examples
None
Inserting a Delay 109

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Displaying Status Lights
This topic shows how to display the status of the different line states of the serial port.

Most communications applications display virtual lights that show when a connection is
made, if data is being sent or received, whether or not flow control is in effect, and so on. The
TApdSLController and TApdStatusLight components display these line states, providing
visual cues to the current state of the connection.

Required components
TApdComPort

TApdSLController

TApdStatusLight

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TAdTerminal

What to do
There are eight line states that can be monitored in Async Professional through status lights
as shown in Table 5.1.

Table 5.1: Async Professional line states

State Description

BREAK Line break

CTS Clear to send

DCD Data carrier detect

DSR Data set ready

ERROR Line error

RING Ring indicator

RXD Receiving data

TXD Transmitting data
10 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Drop a TApdComPort component on the form and configure it to match your system setup.
Next, place a TApdSLController component on the form. This component is the interface
between the comport and the TApdStatusLight components. Now drop a TApdStatusLight
component on the form for each state that you want to monitor. For an added touch, you
might place a label next to each light to indicate which state each light is monitoring. After
all the lights are on the form, select the TApdSLController component and double-click the
Lights property in the Object Inspector. For each state to be monitored, select one of the
TApdStatusLight components. The last step is to enable the lights. This is done via the run-
time Monitoring property of the TApdSLController. Set the property to True in your code to
enable the lights. Set it to False to disable the lights. The following example opens and closes
the port along with enabling and disabling the status lights:

procedure TForm1.OpenBtnClick(Sender : TObject);
begin

ApdComPort1.Open := True;
ApdSLController1.Monitoring := True;

end;

procedure TForm1.CloseBtnClick(Sender : TObject);
begin

ApdSLController1.Monitoring := False;
ApdComPort1.Open := False;

end;

Related examples
TERMDEMO.DPR
Displaying Status Lights 111

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Detecting Line State Changes
This topic shows how to detect line state changes programmatically.

The status lights are nice to have, but they are only visual clues for your users (i.e., you
cannot use them to handle different line state changes in your code). To do that, you must
delve into triggers.

Required components
TApdComPort

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TApdSLController

TApdStatusLight

What to do
The same status events that the TApdSLController component monitors can be handled
with Status Triggers. A Trigger is a hook into the activities of the TApdComPort. When a
trigger condition is met, its trigger event is fired. Status Triggers are internal flags used to fire
one of several events of the TApdComPort component (i.e., OnTriggerStatus,
OnTriggerModemStatus, and OnTriggerLineStatus). There are two steps required to make
use of Status Triggers: first they must be added and, second, they must be set. The trigger
type, either modem, line, output buffer, or transmission, is specified when it is added and
the exact condition(s) is specified when it is set. When the conditions are met, the general
purpose OnTriggerStatus event fires. Other events fire according to the trigger type.
12 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The status trigger types and events they fire are shown in Table 5.2.

A trigger type of stModem can trigger on the state changes shown in Table 5.3 and fires the
OnTriggerModemStatus event.

A trigger type of stLine can trigger on these state changes and fires the OnTriggerLineError
event:

A trigger type of stOutBuffFree occurs when the output buffer has more than the specified
space available and fires the OnTriggerOutBuffFree event.

A trigger type of stOutBuffUsed occurs when the output buffer has less than the specified
space used and fires the OnTriggerOutBuffUsed event.

Table 5.2: Status trigger types

Trigger Description

stModem Trigger on modem status change

stLine Trigger on line status change

stOutBuffFree Trigger on output buffer free value

stOutBuffUsed Trigger on output buffer used value

stOutSent Trigger on characters sent

Table 5.3: stModem state changes

Trigger Description

msCTSDelta Trigger when CTS (Clear To Send) changes

msDSRDelta Trigger when DSR (Data Set Ready) changes

msRingDelta Trigger when a ring is detected

msDCDDelta Trigger when DCD (Data Carrier Detect) changes

Table 5.4: stLine state changes

Trigger Description

lsOverrun Trigger on UART overrun errors

lsParity Trigger on parity errors

lsFraming Trigger on framing errors

lsBreak Trigger on a received line break signal
Detecting Line State Changes 113

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
A trigger type of stOutSent occurs when any call to PutChar or PutBlock is made, including
assignments to the Output property and fire the OnTriggerOutSent event.

Each trigger that is added returns a value of type Word that indicates which trigger fired the
event. This result is an index into an internal trigger array. The specific value of it may
change between each instance of your application so don’t assume it’s always the same. The
following example detects changes in DCD, when the output buffer is 90% full, when
characters have been sent to the output buffer, and updates a status label. Except for the
OutSent trigger, all the status triggers must be reset after they fire (i.e., they are “one shot”
triggers and won’t fire again).

The following example shows how to set up the triggers:

type
TForm1 = class(TForm)

ApdComPort1 : TApdComPort;
StartBtn : TButton;
StatusLabel : TLabel;
procedure StartBtnClick(Sender : TObject);
procedure ApdComPort1TriggerStatus(CP : TObject;

TriggerHandle : Word);
public

{ Public declarations }
DCDTrig : Word;
OutBuffUsedTrig : Word;
OutSentTrig : Word;

end;

var
Form1 : TForm1;

implementation

{$R *.DFM}
14 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
procedure TForm1.StartBtnClick(Sender : TObject);
begin

DCDTrig := ApdComPort1.AddStatusTrigger(stModem);
ApdComPort1.SetStatusTrigger(DCDTrig, msDCDDelta, True);
OutBuffUsedTrig := ApdComPort1.AddStatusTrigger(stOutBuffUsed);
ApdComPort1.SetStatusTrigger(OutBuffUsedTrig, 500, True);
OutSentTrig := ApdComPort1.AddStatusTrigger(stOutSent);
ApdComPort1.SetStatusTrigger(OutSentTrig, 0, True);

end;

procedure TForm1.ApdComPort1TriggerStatus(CP : TObject;
TriggerHandle: Word);

begin
if TriggerHandle = DCDTrig then begin

StatusLabel.Caption := 'DCD changed';
ApdComPort1.SetStatusTrigger(DCDTrig, msDCDDelta, True);

end else if TriggerHandle = OutBuffUsedTrig then begin
StatusLabel.Caption := 'Output buffer has more that 500

chars pending';
ApdComPort1.SetStatusTrigger(OutBuffUsedTrig, 500, True);

end else if TriggerHandle = OutSentTrig then
StatusLabel.Caption := 'Something was transmitted'

end;

end.

Related examples
None
Detecting Line State Changes 115

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Flow Control
This topic shows how to set and monitor flow control settings.

There are times when the receiving application cannot process incoming data as fast as it is
being sent. To keep the receiver from being overloaded, there are line states that can be
toggled to tell the sender to wait until the receiver is ready.

Required components
TApdComPort

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
None

What to do
There are two methods of flow control: Hardware and Software. Hardware flow control uses
the physical lines of the port to signal its state. Software flow control sends specific
characters indicating that flow control is on or off. As a general rule, you should use
Hardware Flow Control, since the Software Flow Control requires that characters be sent in
the data stream.

Hardware Flow Control
To implement Hardware Flow Control, set the TApdComPort.HWFlowOptions property to
the set of options you want. For Receive Flow Control, where the remote device is prohibited
from sending more characters, use hwfUseDTR and hwfUseRTS. These properties lower the
DTR and/or RTS signals when the local input buffer reaches the value of BufferFull. For
Transmit Flow Control, where the local device acknowledges the remote’s Receive Flow
Control and stops sending characters, use hwfRequireDSR and hwfRequireCTS. These
types of flow control work because one system’s RTS is the other’s CTS, likewise for DTR and
DSR.
16 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

The RTS and DTR properties of the TApdComPort refer to the RTS and DTR lines of the
local serial port. With hardware flow control, RTS and DTR are changed automatically
depending on the state of the local system. These lines can also be changed explicitly. The
DSR and CTS properties are read-only, run-time properties since they refer to the state of
the remote system.

If that all seems confusing, it is. Simply put, if you want to implement hardware flow control,
the usual procedure is to set only the hwfUseRTS and hwfRequireCTS properties to True. It
is far less common to set hwfUseDTR and hwfRequireDSR to True. It is even more rare
(almost never) to set all four to True.

Software Flow Control
To implement Software Flow Control, set the TApdComPort.SWFlowOptions to the desired
state of flow control. For Receive Flow Control, use swfReceive; for Transmit flow control,
use swfTransmit; for both use swfBoth. When the BufferFull value is reached, the XOn
character is sent to the sender. The sender will not send further characters until the XOff
character is sent.

Monitoring Flow Control
The TApdComPort.FlowState property returns the current flow control state. If FlowState is
fcOff, flow control is not enabled. If FlowState is fcOn, flow control is enabled, but no flow
control is in effect. If FlowState is fcDsrHold, fcCtsHold, or fcDcdHold, the remote has
lowered DSR, CTS, or DCD, preventing your application from sending characters. If
FlowState is fcXOutHold, fcXInHold, or fcXBothHold, software flow control is in effect.

Related examples
None

 Figure 5.1: Data transmission.

data input
data output

DTR
RTS
DSR
CTS

PC Instrument
data output
data input
DSR
CTS
DTR
RTS
Flow Control 117

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Dialing with RAS
This topic shows how to dial up a network connection with the TApdRasDialer.

Before you can use a TApdWinsockPort or TApdFtpClient to communicate with another
machine on an Inter/Intranet, you need to have a network connection. If you do not have an
network connection, the easiest way to make such a connection is through Dial-Up
Networking or Remote Access Service. See “RAS Dialer Demo” on page 163 for a
demonstration.

Required components
TApdRasDialer

Prerequisite topics
None

Related components
TApdRasStatus

What to do
This tutorial assumes that RAS (Remote Access Service, also known as Dial-Up Networking)
is installed on your machine. RAS is installed by default on most Win95/98/ME machines.
On NT/2000 machines, however, RAS is not installed until you add a modem device to the
system configuration.

First, you need to specify the desired phonebook EntryName which contains necessary
dialup networking connection settings like which modem to use and the phone number to
dial. If you have already used Dial-Up Networking then you probably have at least one entry
in the phonebook. Windows NT/2000 users can simply call the PhonebookDlg method to
manipulate phonebook entries (and even dial with, in which case you’re done). Windows
95/98/ME users can obtain a list of the entries with the ListEntries method. Otherwise, you
can create a phonebook entry with the CreatePhonebookEntry method.

If you choose, you can alter the network login information, such as UserName, Password,
and Domain, or you can enter the information when prompted by a RAS dialog.
18 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Next, you must specify the phone number to dial and the dial mode (synchronous or
asynchronous) and call the Dial method. If you are dialing asynchronously you should
create an OnDialStatus event handler or assign a TApdRasStatus component to the
StatusDisplay property to monitor dialing progress.

The following example shows how to dial up a network connection using synchronous
dialing mode:

procedure TForm1.Dial1Click(Sender: TObject);
var

Error : Integer;
begin

ApdRasDialer1.EntryName := 'MyServer';
ApdRasDialer1.PhoneNumber := '9,800-555-1212';
ApdRasDialer1.DialMode := dmSync;
Error := ApdRasDialer.Dial;
if (Error = ecOK) then

Caption := 'Connected'
else

Caption := ApdRasDialer.GetErrorText(Error);
end;

Related examples
EXRAS1.DPR
Dialing with RAS 119

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Setting up a Winsock Port
This topic shows you how to set up a TApdWinsockPort component and connect to a
Winsock Socket.

Direct connection over phone lines, where one modem calls another modem, does not fit
the requirements of all applications. Sometimes, you will want to connect over a network
using Winsock.

Required components
TApdWinsockPort

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TApdRasDialer

TApdSocket

What to do
The TApdComPort component is designed for communications through the serial ports
while the TApdWinsockPort component is designed for communications through Winsock.
The Async Professional implementation of Winsock relies on an existing Winsock/network
connection. The easiest way to make such a connection is usually through Dial-Up
Networking or Remote Access Service, although you can get a Winsock connection through
an Inter/Intranet connection. The TApdWinsockPort component is the interface between
your application and the Winsock DLL. It is a direct descendant of the TApdComPort
component and shares much of the same functionality, but there are a few important
differences. Winsock is a level above serial ports so it does not use the ComNumber
property. The Parity, StopBits, and DataBits properties are also not used, since Winsock
defines its own settings.

The TApdWinsockPort component can handle a single connection, either in Client or
Server mode. A Winsock Client connects to a Winsock Server, which is essentially the same
as a Client that dials and a Host that answers with serial communications. Set the WsMode
property to the appropriate mode. For a Client, also set the WsAddress property to the
network address of the server, and the WsPort property to the port on the server you intend
to connect to. When a Server is opened (using the Open property) it listens for a connection
20 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
attempt from a client. When the Client is opened, it tries to connect to the server. The
OnWsConnect event fires when the connection is made and the OnWsDisconnect event
fires when the connection is broken.

The network connections are listed in the WsLocalAddresses property. A network
connection to use can be chosen by setting the WsLocalAddressIndex property to one of the
addresses specified in WsLocalAddresses.

If you need to connect to the remote site through a proxy server, the WsSocksServerInfo
property allows you to specify the proxy server to use. This property expands into several
subproperties that allow you to provide the address, port, user name, password and the
version of SOCKS support to use.

The following example connects to an Internet chess site through an existing Winsock
connection:

procedure TForm1.ConnectBtnClick(Sender : TObject);
begin

ApdWinsockPort1.WsAddress := 'ics.onenet.net'
ApdWinsockPort1.WsPort := 'telnet';
ApdWinsockPort1.Open;

end;

procedure TForm1.ApdWinsockPort1WsConnect(Sender : TObject);
begin

Caption := 'Connected';
end;

Related examples
EXCLIENT.DPR

EXSERVER.DPR

EXWZSEND.DPR

EXWZRECV.DPR
Setting up a Winsock Port 121

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Logging in to an FTP Server
This topic shows how to log in anonymously to an FTP server with the TApdFtpClient.

FTP servers require successful login before they allow a file download.

Required components
TApdFtpClient

Prerequisite topics
“Dialing with RAS” on page 161.

Related components
None

What to do
The TApdFtpClient is designed to communicate through Winsock to an FTP server and it
relies on an existing Winsock/network connection. If you do not have an Inter/Intranet
connection, the easiest way to make such a connection is through Dial-Up Networking or
Remote Access Service. To establish a Dial-Up connection, see the section describing how to
use the TApdRasDialer.

To login to an FTP server you must first set the ServerAddress property to the domain name
or IP address of an FTP server, set the UserName property to the user’s login ID, and set the
Password property to the user’s login password. At this point the Login method can be
called to open the connection. The OnFtpStatus event fires with scOpen status code when a
control connection to the server is established, and then again with scLogin when the server
has authenticated the user ID information.

Most FTP servers allow a user to login anonymously for restricted access to files at the
server. To login anonymously, use “ANONYMOUS” for the login ID and your e-mail
address for the password.
22 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example connects to the TurboPower FTP server through an existing
Winsock connection:

procedure TForm1.LoginBtnClick(Sender : TObject);
begin

ApdFtpClient1.ServerAddress := 'ftp.turbopower.com';
ApdFtpClient1.UserName := 'anonymous';
ApdFtpClient1.Password := 'somebody@somedomain.com';
ApdFtpClient1.Login;

end;

procedure TForm1.ApdFtpClient1FtpStatus(Sender: TObject;
StatusCode: TFtpStatusCode; Info: PChar);

begin
case StatusCode of

scClose : Caption := 'Disconnected';
scOpen : Caption := 'Connected';
scLogin : Caption := 'Logged in';
scLogout : Caption := 'Logged out';
scFtpError : Caption := 'Cannot log in';
scWsError : Caption := 'Winsock error';

end;
end;

Related examples
EXFTP1.DPR
Logging in to an FTP Server 123

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Changing the Current Working Directory of an FTP Server
This topic shows how to change the working directory at an FTP server with the
TApdFtpClient.

Downloading several files from an FTP server where the files are located deep in a
directory tree can be difficult if you are typing in the remote file path name each time. It can
be much simpler to set the current working directory at the server and then work solely with
file names.

Required components
TApdFtpClient

Prerequisite topics
“Logging in to an FTP Server” on page 153.

Related components
None

What to do
To change the current working directory after logging in to an FTP server, simply call the
ChangeDir method of the TApdFtpClient with the desired remote path name. To change to
the parent directory, use “..” for the remote path name.
24 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example changes the client’s current working directory on the TurboPower
FTP server. It is assumed the user is already logged in.

procedure TForm1.AproUpdatesDirBtnClick(Sender : TObject);
begin

ApdFtpClient1.ChangeDir('pub/apro/updates');
{CWD is now pub/apro/updates}

end;

procedure TForm1.ParentDirBtnClick(Sender : TObject);
begin

ApdFtpClient1.ChangeDir('..');
{CWD is now pub/apro}

end;

procedure TForm1.ApdFtpClient1FtpStatus(Sender: TObject;
StatusCode: TFtpStatusCode; Info: PChar);

begin
case StatusCode of

scComplete : Caption := 'Directory changed';
scFtpError : Caption := 'check remote path name';
scWsError : Caption := 'Winsock error';

end;
end;

Related examples
EXFTP1.DPR
Changing the Current Working Directory of an FTP Server 125

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Displaying the Contents of a Directory on an FTP Server
This topic shows how to display a listing of the contents of a directory (all file details or file
names only) at an FTP server with the TApdFtpClient.

Before you can download a file from an FTP site, you may need to know what files are
available and in which directory they are located.

Required components
TApdFtpClient

Prerequisite topics
“Logging in to an FTP Server” on page 153.

“Changing the Current Working Directory of an FTP Server” on page 143.

Related components
None

What to do
To obtain a listing of the contents of a remote directory call the ListDir method of the
TApdFtpClient with the desired remote path name. If no remote path name is specified then
the current working directory is assumed. A full listing includes file properties such as size,
timestamp and attributes, whereas a names-only listing consists only of the file names.

The following is a few lines of a full listing of the contents of the TurboPower FTP server’s
PUB directory:

09-02-99 10:14AM 71 00index.txt
09-02-99 10:14AM <DIR> abbrevia
03-02-99 11:47AM <DIR> analyst
09-02-99 10:14AM <DIR> apro
26 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example obtains a full listing of the contents of the TurboPower FTP server’s
PUB directory. It is assumed the user is already logged in.

procedure TForm1.DirectoryBtnClick(Sender : TObject);
begin

ApdFtpClient1.ListDir('pub', True);
end;

procedure TForm1.ApdFtpClient1FtpStatus(
Sender: TObject; StatusCode: TFtpStatusCode; Info: PChar);

begin
case StatusCode of

scDataAvail : Memo1.Lines.Add(StrPas(Info));
scFtpError : Caption := 'check remote path name';
scWsError : Caption := 'Winsock error';

end;
end;

Related examples
EXFTP1.DPR
Displaying the Contents of a Directory on an FTP Server 127

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Downloading a File from an FTP Server
This topic shows how to download a file from an FTP server with the TApdFtpClient.

Now that you can login, change the remote working directory and display its contents, it is
time to do what you intended to do in the first place: download a file.

Required components
TApdFtpClient

Prerequisite topics
“Logging in to an FTP Server” on page 153.

“Displaying the contents of a directory on an FTP Server” on page 149.

Related components
None

What to do
To transfer a file from an FTP server you simply need to call the RetrieveFile method of the
TApdFtpClient with the remote and local file names. An additional parameter,
RetrieveMode, is required to specify what to do if the local file already exists. You will
probably want to write an event handler for the OnFtpStatus event to let you know when the
transfer is complete and to provide progress updates.
28 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example copies the file FILES.ALL from the TurboPower FTP server’s PUB
directory to c:\temp. It is assumed the user is already logged in.

procedure TForm1.DownloadBtnClick(Sender : TObject);
begin

ApdFtpClient1.Retrieve(
'pub/FILES.ALL', 'c:\temp\Files.all', rmReplace);

end;

procedure TForm1.ApdFtpClient1FtpStatus(
Sender: TObject; StatusCode: TFtpStatusCode; Info: PChar);

begin
case StatusCode of

scTransferOK : Caption := 'download complete';
scProgress : Caption :=

IntToStr(ApdFtpClient1.BytesTransferred) +
'bytes transferred';

scFtpError : Caption := 'check remote path name';
scWsError : Caption := 'Winsock error';

end;
end;

Related examples
EXFTP1.DPR
Downloading a File from an FTP Server 129

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Paging with Winsock
This topic describes how to send an alphanumeric page over an Internet
(TCP/IP) connection.

The TApdSNPPPager component provides the ability to send a page from your application.
The page to be sent should consist of plain ASCII text of up to 255 characters in length (this
may vary with TAP Paging servers, check with your service provider if you are in doubt).

Required components
TApdWinsockPort

TApdSNPPPager

Prerequisite topics
“Setting up a Winsock Port” on page 120.

Related components
TApdTAPPager

What to do
TApdSNPPPager is designed to send a single page to a single recipient on a single paging
server at a time. For each page the relevant properties must be set and the Send method
called.

The following example shows obtaining the relevant paging parameters from some common
VCL components placed on a form and sending the page in response to a button click. It also
shows simple page status monitoring by setting the caption of a TLabel within
OnSNPPError and OnSNPPSuccess event handlers.

To create this, first create a new form and drop the following components onto it:

• A TApdSNPPPager(naturally).

• Two TEdits(one for the Socket Address, one for the Pager ID).

• A TMemo(for the message).

• A TLabel (for the status display).

• A TButton (to make it all happen).
30 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Arrange these on the form in any way you find esthetic. Give the TButton some meaningful
caption like “Send.” You might also want to drop on some additional TLabels and place and
caption them to indicate what the TEdits and TMemo are for.

Next, double-click on the TButton and add the following code to the empty OnClick event
handler generated in the Code Editor.

procedure TForm1.Button1Click(Sender: TObject);
begin

ApdWinsockPort1.wsAddress := Edit1.Text;
ApdWinsockPort1.wsPort := '1234';
ApdSNPPPager1.PagerID := Edit2.Text;
ApdSNPPPager1.Message := Memo1.Lines;
ApdSNPPPager1.Send;

end;

Next, click on the TApdSNPPPager component, switch to the Object Inspector, click on the
Events tab, double-click in the OnSNPPError event, and add this code to the event handler.

procedure TForm1.ApdSNPPPager1SNPPError(
Sender : TObject; Code : Integer; Msg : String);

begin
Label1.Caption := Msg;

end;

Now, go back to the Object Inspector, click in the space next to the OnSNPPSuccess event,
click on the down arrow that appears at the right and select the same method
(ApdSNPPPager1SNPPError) used above. This works because both event handlers are
designed with the same “signature” so both of them can use the same event handler method.

Related examples
EXSNPP.DPR
Paging with Winsock 131

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Paging with Modems
This topic describes how to send a simple alphanumeric page over a phone line and modem.

The TApdTAPPager component provides the ability to send a page from your application.
The page to be sent should consist of plain ASCII text of up to 255 characters in length (this
may vary with TAP Paging servers, check with your service provider if you are in doubt).

Required components
TApdComPort

TApdTAPPager

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TApdSNPPPager

What to do
TApdTAPPager is designed to send a single page to a single recipient on a single paging
server at a time. For each page the relevant properties must be set and the Send method
called.

The following example shows obtaining the relevant paging parameters from some common
VCL components placed on a form and sending the page in response to a button click. It
also shows simple page status monitoring by setting the caption of a TLabel within an
OnPageStatus event handler.

To create this, first, create a new form and drop the following components on to it:

• A TApdTAPPager(naturally)

• Two TEdits(one for the Phone Number, one for the Pager ID)

• A TMemo(for the message)

• A TLabel (for the status display)

• A TButton (to make it all happen).
32 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Arrange these on the form in any way you find esthetic. Give the TButton some meaningful
caption like “Send.” You might also want to drop on some additional TLabels and place and
caption them to indicate what the TEdits and TMemo are for.

Next, double-click on the TButton and add the following code to the empty OnClick event
handler generated in the Code Editor.

procedure TForm1.Button1Click(Sender: TObject);
begin

ApdTAPPager1.PhoneNumber := Edit1.Text;
ApdTAPPager1.PagerID := Edit2.Text;
ApdTAPPager1.Message := Memo1.Lines;
ApdTAPPager1.Send;

end;

Next, click on the TApdTAPPager component, switch to the Object Inspector, click on the
Events tab, double-click in the OnPageStatus event, and add this code to the event handler.

procedure TForm1.ApdTAPPager1PageStatus(
Sender : TObject; Event : TTapStatus);

begin
Label1.Caption := TAPStatusMsg(Event);

end;

Related examples
EXPAGING.DPR

EXTAP.DPR
Paging with Modems 133

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Sending an SMS Message
This topic shows how to access cellular phones, or other GSM compatible devices, and how
to send a SMS message.

The TApdGSMPhone component provides the ability to send or receive a SMS message
from your application. The TApdGSMPhone component implements the text-mode
interface and each message can consist of up to 160 characters. If your cell phone is not GSM
capable, most cellular service providers will offer a TAP or SNPP gateway. See the
TApdTAPPager and TApdSNPPPager components for details on sending messages using
those paging protocols.

Required components
TApdComPort

TApdGSMPhone

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TApdTAPPager

TApdSNPPPager

What to do
Since the TApdGSMPhone component was designed for SMS messaging, the following
example shows how to connect to a GSM phone and send a message. If you do not have a
GSM phone or device, you can still use the TApdTAPPager or TApdSNPPPager components
to send a message through the SMS gateway. Consult your cell phone service provider for
message format and addresses.

To create this application, first, create a new form and drop a TApdComPort component,
and a TApdGSMPhone component of course. Two TEdit components can be dropped on
the form. One TEdit is for the phone number, which will be the destination address for the
message. The other TEdit would be for the message itself. Two TLabel components would be
34 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
appropriate for a title next to each TEdit to explain what they will contain. Finally, drop the
obligatory TButton on the form, change the Caption and Name to “SendMessage” and
create the OnClick event handler.

procedure TForm1.SendMessageClick(Sender: TObject);
begin

{ set the message properties }
ApdGSMPhone1.SMSAddress := Edit1.Text;
ApdGSMPhone1.SMSMessage := Edit2.Text;
{ send the message }
ApdGSMPhone1.SendMessage;

end;

When the message has been sent to the phone, the OnSessionFinish event will be generated.
The ErrorCode parameter of that event will tell you whether the message was sent
successfully (ErrorCode = ecOK) or whether it failed (ErrorCode = one of the ecSMSXxx
error codes). Create the OnSessionFinish event handler and make it look like the following:

procedure TForm1.ApdGSMPhone1SessionFinish(Pager:
TApdCustomGSMPhone; ErrorCode: Integer);
begin

ShowMessage('Message status: ' + ErrorMsg(ErrorCode));
end;

Compile and run your project. Enter a destination address in the first edit control and a
short message in the second edit control, and then click the button. The “Message status”
dialog box will be displayed once the phone responds to the commands.

Related examples
EXSMSPGR.DPR
Sending an SMS Message 135

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Managing SMS Messages
This topic shows how to access a cellular phone message store using the TApdGSMPhone
component.

In addition to sending an SMS message, the TApdGSMPhone also provides access to the cell
phone’s internal message store. This message store usually contains messages that have been
received, but it can also contain messages queued for sending.

Required components
TApdComPort

TApdGSMPhone

Prerequisite topics
“Setting Up a Comport” on page 74.

“Sending an SMS Message” on page 134.

Related components
TApdTAPPager

TApdSNPPPager

What to do
The TApdGSMPhone component provides the MessageStore property, which can be
synchronized with the cell phone’s internal message store. If the QuickConnect property of
the TApdGSMPhone component is set to False, a call to the Connect method will simply
initialize the device for Text mode. If QuickConnect is True, the Connect method will
initialize the device, then will retrieve all of the messages stored in the phone’s internal
message storage. At any time, you can call the Synchronize method, which will reload all of
the messages from the phone.
36 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The MessageStore property is a TStringList. After synchronization, each Strings item in the
MessageStore is a string depicting the date and time of the message, and each Objects item is
a TApdSMSMessage class which describes the message.

TApdSMSMessage = class(TObject)
public

property Address : string;
property Message : string;
property MessageIndex : Integer;
property Status : TApdSMSStatus;
property TimeStamp : TDateTime;
property TimeStampStr : string;

end;

After synchronization, the MessageStore property can be used to manage the phone’s
internal message store. The Delete method will delete the message from storage and the
AddMessage method will add a new message. Alternatively, the WriteToMemory method of
the TApdGSMPhone component can be used instead of the AddMessage method. The
SendFromMemory method of the TApdGSMPhone component will send a single message
from storage, and the SendAllMessages method will send all unsent message from storage.

Create a new project and drop a TApdComPort and TApdGSMPhone component on the
form. Change the ComNumber property of the TApdComPort component to reflect the
serial port where your GSM phone is connected. Set the QuickConnect property of the
TApdGSMPhone component to False. Drop a TButton on the form and change the Caption
and Name properties to “Connect”, then create the OnClick event handler and add the
following code:

procedure TForm1.ConnectClick(Sender : TObject);
begin

ApdGSMPhone1.Connect;
end;

The phone will be initialized and the phone’s internal message store will be retrieved. When
this is complete, the OnGSMComplete event of the TApdGSMPhone component will be
generated with the State parameter equal to gsListAll. We will use a TListBox to display the
message store, so drop one of those on the form. Create the OnGSMComplete event handler
and add the following code to display the time stamps of the messages in the list box.

procedure TForm1.ApdGSMPhone1GSMComplete(Pager:
TApdCustomGSMPhone; State: TApdGSMStates; ErrorCode: Integer);
begin

if State = gsListAll then
ListBox1.Items.AddStrings(Pager.MessageStore);

end;
Managing SMS Messages 137

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
In this example we will be displaying the details of the message when the list box is double
clicked. Drop three TEdit components, one for the address, one for the timestamp, and one
for the status of the message. Drop a TMemo component on the form to display the message
text. Feel free to add corresponding TLabel components. Create the OnDblClick event
handler for the TListBox and add the following code:

procedure TForm1.ListBox1DblClick(Sender: TObject);
var

I : Integer;
Msg : TApdSMSMessage;

begin
if ListBox1.ItemIndex > -1 then begin

I := ListBox1.ItemIndex;
Msg := ApdGSMPhone1.MessageStore.Messages[I];
Edit1.Text := Msg.Address;
Edit2.Text := Msg.TimeStampStr;
Edit3.Text := ApdGSMPhone1.StatusToStr(Msg.Status);
MemoMessage.Text := Msg.Message;

end;
end;

You can just as easily delete messages from the phone, create the OnKeyDown event handler
for the TListBox and add the following:

procedure TForm1.ListBox1KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin

if Key = VK_DELETE then begin
if ListBox1.ItemIndex > -1 then
ApdGSMPhone1.MessageStore.Delete(ListBox1.ItemIndex);

end;

You can also use the TEdit components that were previously added to add a new message to
the message store. Drop another TButton on the form and change the Caption and Name
properties to “AddMessage”, create the OnClick event handler and add the following code:

procedure TForm1.AddMessageClick(Sender: TObject);
begin

{ Edit1 is the Address TEdit, Memo1 is the message text }
ApdGSMPhone1.WriteToMemory(Edit1.Text, Memo1.Text);

end;
38 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
To send an unsent message from the MessageStore, drop another TButton component on
the form, change the Caption and Name properties to “SendFromMemory”, create the
OnClick event handler and add the following code:

procedure TForm1.Button1Click(Sender: TObject);
var

Msg : TApdSMSMessage;
I : Integer;

begin
if ListBox1.ItemIndex > -1 then begin

I := ListBox1.ItemIndex;
Msg := ApdGSMPhone1.MessageStore.Messages[I];
{ only send messages that have not been sent }
if Msg.Status = ssUnsent then
ApdGSMPhone1.SendFromMemory(ListBox1.ItemIndex);

end;
end;

Related examples
EXSMSPGR.DPR

EXGSM.DPR
Managing SMS Messages 139

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Converting a Document to Fax Format
This topic shows how to convert an existing ASCII text, BMP, PCX, DCX or TIFF document
to a faxable format.

When faxing a document, the first step is converting it into a faxable format, something that
the TApdSendFax component can understand and transmit to the receiving fax machine.

Required components
TApdFaxConverter

Prerequisite topics
None

Related components
TApdFaxUnpacker

TApdSendFax

What to do
If you want to fax an existing document, it must be in an APF, ASCII Text, BMP, PCX, DCX,
or TIFF format. The TApdFaxConverter component converts the file into the Async
Professional Fax format (APF), which can then be processed by the Async Professional
faxing components. The TApdFaxConverter.DocumentFile property specifies the file to be
converted. The conversion method depends on the format of the DocumentFile. The
TApdFaxConverter.InputDocumentType property indicated the type of file. You can either
specify the path and name of the resulting fax file in the OutFileName property or leave the
property blank; in that case the file has the same path and name but an extension of “APF.” If
you are converting an ASCII text file, you can specify which font to use in the converted APF
file in the EnhFont property.
40 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example allows the user to select a text file and converts it to the APF format:

procedure TForm1.Button1Click(Sender : TObject);
begin

OpenDialog1.Filter := 'Text files (*.TXT)|*.TXT';
if OpenDialog1.Execute then begin

ApdFaxConverter1.DocumentFile := OpenDialog1.FileName;
ApdFaxConverter1.InputDocumentType := idText;
ApdFaxConverter1.ConvertToFile;

end;
end;

Related examples
CVT2FAX.DPR
Converting a Document to Fax Format 141

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Configuring a Device for Faxing
This topic shows how to select and configure a fax modem for faxing.

The fax protocol requires specific settings for faxes to be transmitted successfully. The
TApdComPort component properties are automatically changed from their defaults when a
TApdSendFax or TApdReceiveFax component is dropped on the form. The fax protocols are
well defined, and the default commands sent by the faxing components work for the
majority of fax modems. To ensure reliable operations, the fax modem should be configured
explicitly.

Required components
TApdComPort

Prerequisite topics
“Setting Up a Comport” on page 74.

“Selecting and Configuring a Modem” on page 85.

Related components
TApdTapiDevice

What to do
With the TApdTapiDevice component, call the ConfigAndOpen method. Call the
appropriate faxing method when the OnTapiPortOpen event fires. The following example
configures the device and sends a fax.

procedure TForm1.ConfigAndSendBtnClick(Sender : TObject);
begin

ApdTapiDevice1.ConfigAndOpen;
end;

procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
begin

ApdSendFax1.StartTransmit;
end;

Related examples
SENDFAX.DPR
42 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Sending Faxes to One Recipient
This topic shows how to send a fax to a single recipient and to send several faxes to multiple
recipients in the same fax session.

The TApdSendFax component provides the ability to send a fax in your application. The fax
to be sent can consist of a single or several documents, with or without a cover page. The
TApdSendFax component can send a fax over a dedicated fax call, where the dialing is
handled by the component, or it can send a fax over an existing voice connection.

Required components
TApdComPort

TApdSendFax

Prerequisite topics
“Setting Up a Comport” on page 74.

“Converting a Document to Fax Format” on page 140.

“Configuring a Device for Faxing” on page 142.

Related components
TApdFaxStatus

TApdFaxLog

TApdFaxConverter

What to do
The fax document to be sent must be either an ASCII text file with or without replaceable
tags or an Async Professional Fax (APF) file. The APF file can be created with the fax printer
driver, converted from another document with the TApdFaxConverter component, or
created by appending separate APF files into one APF file.

Once you have an APF file on disk, and know where it is, you can fax it. The component that
handles the fax handshaking and the transmission of the fax pages is the TApdSendFax
component. For simple, single APF file faxing, there are only two TApdSendFax component
properties that must be set, FaxFile and PhoneNumber. The FaxFile property specifies the
APF file to send, including the full path and file name. The PhoneNumber property is the
phone number of the receiving fax machine.
Sending Faxes to One Recipient 143

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
According to FCC regulations, all faxes sent in the United States must have the date/time of
transmission, sender’s identification, and phone number of the sending fax machine or
individual. The TApdSendFax.HeaderLine property is used to overlay this information at
the top of each fax page. The font can be changed by setting EnhTextEnabled to True and
specifying the font in the EnhHeaderFont property. You can hard-code the overlaid text in
the HeaderLine property at run time or design time, or you can use replaceable tags to allow
changes at run time. Replaceable tags are codes inserted into the text that are replaced with
real information. The Async Professional replaceable tags are two character strings that
begin with ‘$’ and are followed by the code. Table 5.5 lists the replaceable tags and their
meanings.

Following is an example of a replaceable tagged HeaderLine that has the date/time of
transmission, station ID, and sender’s name:

ApdSendFax1.HeaderLine := 'Date/Time : $D $T, $I, $F';

The TApdSendFax component can also send a cover page as the first page of the fax or as the
fax in its entirety. The cover page can be either an ASCII text file or an APF file. Regardless of
the file type, set the TApdSendFax.CoverPage property to the file’s path and name. The
advantage of an ASCII text file as the cover page is that you can use the same replaceable tags
that were used in the HeaderLine property in it, the advantage of an APF is that you can
include graphics and different fonts in the same document. If you specify an ASCII text file,
the replaceable tags are replaced with the actual values and then the document is converted
to APF format. The font used for the ASCII text cover page can be changed by setting the
EnhTextEnabled property to True and specifying the font in the EnhFont property.

Table 5.5: Replaceable tags

Tag Description

$D Current date in MM/DD/YY format

$I Station ID

$N Total number of pages

$P Current page number

$R Recipient’s name (from HeaderRecipient property)

$F Sender’s name (from HeaderSender property)

$S Title of fax (from HeaderTitle property)

$T Current time in HH:MMpm format

$$ Inserts the ‘$’ character
44 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
A send-fax call can send only a single APF fax file and cover page. To send several APF files
you must append the files together to make a single APF file. To specify the APF files to be
appended, use the TApdSendFax.FaxFileList string list property. You can use the
ConcatFaxes method to concatenate the APF files in the FaxFileList property if you want to
save the appended APF file. If you do not use the ConcatFaxes method, the APF files in the
FaxFileList property are concatenated to a temporary file and then deleted when the fax has
been sent.

To send the fax, call the TApdSendFax.StartTransmit method. The faxmodem is initialized
for faxing and the component dials the number specified in the PhoneNumber property.
After the call is answered and the fax devices negotiate a connection, the fax is sent. To
provide a visual indication of the progress of the fax call, the TApdFaxStatus component
displays a dialog box showing several status indicators. The TApdFaxLog component creates
and maintains a text file containing the start and end times of all transmitted faxes.

Once the fax session is complete, either through normal termination or due to an
unrecoverable error, the OnFaxFinish event fires. The ErrorCode property of this event has
the reason the session ended. You can pass the ErrorCode parameter to the ErrorMsg
function to get a text version of the message.

The following example gets a file name from a TOpenDialog component and then sends the
fax. This example handles the selection of either a single or several APF files. Once the
transmission is complete, the result of the fax sessions is shown.

procedure TForm1.SelectSendClick(Sender : TObject);
begin

OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
OpenDialog1.Options := [ofAllowMultiSelect];
if OpenDialog1.Execute then begin

ApdSendFax1.FaxFileList.Assign(OpenDialog1.Files);
ApdSendFax1.StartTransmit;

end;
end;

procedure TForm1.ApdSendFax1FaxFinish(
CP : TObject; ErrorCode : Integer);

begin
ShowMessage(ErrorMsg(ErrorCode));

end;
Sending Faxes to One Recipient 145

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
In addition to using the TApdSendFax component to place a dedicated fax call, the
component can use a call already in progress. The StartManualTransmit method takes over
the call when it is called and transmits the cover page and fax file specified in the appropriate
properties. The following example sends a fax over an existing voice connection.

procedure TForm1.SendFaxNowBtnClick(Sender : TObject);
begin

ApdSendFax1.FaxFile := 'REPORT.APF';
ApdSendFax1.StartManualTransmit;

end;

Related examples
None
46 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Sending Faxes to Different Recipients
This topic shows how to send a single fax to several recipients or several faxes to different
recipients.

Some fax-enabled applications allow scheduling several faxes to one or more recipients or
broadcasting the same fax to many recipients. The TApdSendFax component can initiate a
single fax session and place multiple fax calls during that session.

Required components
TApdComPort

TApdSendFax

Prerequisite topics
“Setting Up a Comport” on page 74.

“Configuring a Device for Faxing” on page 142.

“Sending Faxes to One Recipient” on page 143.

Related components
TApdFaxStatus

TApdFaxLog

What to do
The task of sending a single fax to a single recipient is easily expanded to sending the same
fax to multiple recipients or sending different faxes to different recipients in the same fax
session by using the TApdSendFax.OnFaxNext event. This event fires before placing each
separate fax call in the fax session. The parameters passed to the event are CP (the
TApdComPort component that owns the session), APhoneNumber (the phone number of
the next fax recipient), AFaxFile (the APF path and file name of the next fax), and
ACoverFile (the cover file of the next fax). The TApdSendFax component keeps sending
faxes as long as valid information is returned in the APhoneNumber and AFaxFile
parameters.

The OnFaxNext event fires before each fax call is placed and ignores the FaxFile, FaxFileList,
PhoneNumber, and CoverPage properties of the TApdSendFax component. The APF files
specified in the FaxFileList property must be appended prior to starting the fax call since the
AFaxFile parameter does not accept a TStringList. To manually append several APF files,
Sending Faxes to Different Recipients 147

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
add them to the FaxFileList property and then call the TApdSendFax.ConcatFaxes method.
Pass a temporary file name in the ConcatFaxes method and use that file name in the
OnFaxNext event. The following example appends several faxes selected with a
TOpenDialog component. Once this method is complete, the APF file specified in the
ConcatFaxes parameter can be used in the OnFaxNext event.

procedure TForm1.PrepareFaxesToBroadcast;
begin

OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
OpenDialog1.Options := [ofAllowMultiSelect];
if OpenDialog1.Execute then begin

ApdSendFax1.FaxFileList.Assign(OpenDialog1.Files);
ApdSendFax1.ConcatFaxes('C:\FAXES\OUTFAX.APF');

end;
end;

Since all fax calls are placed in the same fax session, the OnFaxFinish event fires after the last
fax is sent or an unrecoverable error occurs. To keep track of each fax call, use the
TApdSendFax.OnFaxLog event. This event fires at the start and finish of each individual fax
call in the fax session.

The following example iterates through a database, sends all specified faxes, and flags the
database record, depending on whether or not the fax was successful.

procedure TForm1.StartSendingBtnClick(Sender : TObject);
begin

ApdSendFax1.HeaderSender := 'Joe Cool';
ApdSendFax1.StationID := '719 260 7151';
Table1.First;
if not Table1.EOF then

ApdSendFax1.StartTransmit;
end;

procedure TForm1.ApdSendFax1FaxNext(
CP : TObject; var APhoneNumber, AFaxFile,
ACoverFile : TPassString);
48 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
begin
Table1.Next;
if not Table1.EOF then begin

ApdSendFax1.HeaderRecipient :=
Table1.FieldByName('RecipientName').AsString;

ApdSendFax1.HeaderTitle :=
Table1.FieldByName('Title').AsString;

APhoneNumber := Table1.FieldByName('PhoneNumber').AsString;
AFaxFile := Table1.FieldByName('APFName').AsString;
ACoverFile := ApdSendFax1.CoverFile;

end;
end;

procedure TForm1.ApdSendFax1FaxLog(
CP : TObject; LogCode : TFaxLogCode);

begin
case LogCode of

lfaxTransmitStart : Table1.FieldByName(
'Status').AsString := 'Sending';

lfaxTransmitOK : Table1.FieldByName(
'Status').AsString := 'Sent OK';

lfaxTransmitFail : Table1.FieldByName(
'Status').AsString := 'Failed';

end;
end;

Related examples
SENDFAX.DPR
Sending Faxes to Different Recipients 149

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Receiving Faxes
This topic shows how to receive a single fax or multiple faxes.

Receiving documents over telephone lines is a time-saving process that has nearly
revolutionized modern business practices. Getting a document from across country used to
take days; now can be done in minutes. The TApdReceiveFax component gives your
application this efficiency.

Required components
TApdComPort

TApdReceiveFax

Prerequisite topics
“Setting Up a Comport” on page 74.

“Configuring a Device for Faxing” on page 142.

Related components
TApdFaxStatus

TApdFaxLog

What to do
The TApdReceiveFax component is designed to receive faxes manually or automatically
from a single fax call or throughout an entire fax session. A single receive fax call starts with
the TApdReceiveFax component monitoring the activities of its associated TApdComPort
When an incoming call is detected, the component answers the call, negotiates, and receives
the fax. The fax call ends when the connection is dropped, due to either the end of the fax
document or an unrecoverable error. Manual fax reception can be done from a new
incoming call or during a voice call that is already in progress. A receive fax session starts
with the TApdReceiveFax component monitoring for the incoming call and ends when the
TApdReceiveFax component monitoring is cancelled.

The TApdReceiveFax.StationID property defines the identification string that is sent to the
sending fax machine. The sending fax machine usually displays this information so the
sender can verify the fax is being received by the right location. Common values for the
StationID property are the phone number or business name.
50 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
When the fax is being received, the fax page data is saved to an Async Professional Fax
(APF) file. The naming scheme used to name the received APF file will depend on your
application’s requirements. There are three ways to name the incoming fax:

1. Set the FaxNameMode property to fnCount. This uses a sequential numbering system
to name the received faxes (FAX0001.APF, FAX0002.APF, and so on).

2. Set the FaxNameMode property to fnMonthDay. This uses the month and day the fax
is received along with a sequential numbering system (02100001.APF {Feb 10, 1st fax
of the day}, 02100002.APF, and so on).

3. Create your own naming scheme with the OnFaxName event. You can also specify the
directory/folder the received in which faxes are stored with the DestinationDir
property.

Now that you know where the received fax will be stored and what they will be named, you
can start receiving faxes. The TApdReceiveFax.OneFax property determines if the fax
session receives a single or several faxes. If the OneFax property is True, the next call is
answered and the fax received. After that, the TApdReceiveFax component does not answer
any further calls. If OneFax is False, the TApdReceiveFax component answers and receives
faxes until the TApdReceiveFax.CancelFax method is called or there is an unrecoverable
error. In either case, to resume receiving faxes, call the TApdReceiveFax.StartReceive
method. The TApdReceiveFax component monitors the TApdComPort component until
the number of rings specified in the AnswerOnRing property are detected, then it answers
the call and receives the fax.

The OnFaxLog event fires when the incoming call is verified to be a fax call and when the fax
call terminates, whether as the result of a successful transmission or an unrecoverable error.
If OneFax is True, the OnFaxFinish event fires after the single fax is received. If OneFax is
False, the OnFaxFinish event fires after CancelFax is called or an unrecoverable error occurs.
Receiving Faxes 151

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example opens the port, saves the received faxes in a specific directory, uses
the fnCount method of naming a file, records the start and end of each fax call, and displays
a message when the fax session is finished.

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdComPort1.Open := True;
ApdReceiveFax1.DestinationDir := 'C:\RECVFAX';
ApdReceiveFax1.FaxNameMode := fnCount;
ApdReceiveFax1.StationID := '719 260 7151';
ApdReceiveFax1.StartReceive;

end;

procedure TForm1.ApdReceiveFax1FaxFinish(
CP : TObject; ErrorCode : Integer);

begin
ShowMessage('Fax received : ' + ErrorMsg(ErrorCode));

end;

procedure TForm1.ApdReceiveFax1FaxLog(
CP : TObject; LogCode : TFaxLogCode);

begin
case LogCode of

lfaxReceiveStart : Memo1.Lines.Add(
'Receiving ' + ApdReceiveFax1.FaxFile);

lfaxReceiveOK : Memo1.Lines.Add(
ApdReceiveFax1.FaxFile + ' OK');

lfaxReceiveFail : Memo1.Lines.Add(
ApdReceiveFax1.FaxFile + ' failed');

end;
end;

To begin a manual fax reception, use the TApdReceiveFax.StartManualReceive method.
This method has one parameter, SendATAToModem, which determines whether or not the
faxmodem has to answer the call. If the call is already in progress, SendATAToModem
should be False, if the phone has not yet been answered, the property should be set to True.
The following example uses a button to begin receiving a fax over an existing voice
connection:

procedure TForm1.ReceiveFaxNowBtnClick(Sender : TObject);
begin

ApdReceiveFax1.StartManualReceive(False);
end;

Related examples
RCVFAX.DPR
52 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Converting a Fax to Another Format
This topic shows how to convert an existing fax file into a BMP, PCX, DCX or TIFF
document.

The APF format is good for sending and receiving faxes, but what about doing something
else with the fax file? The APF format is a proprietary format, based on the Group 3
standard. For it to be of use outside the context of the Async Professional components, it
must be converted to a format that is more widely understood.

Required components
TApdFaxUnpacker

Prerequisite topics
None

Related components
TApdFaxConverter

TApdReceiveFax

What to do
The first step in converting an APF file to another file type is to have an APF file to convert.
Most likely this is a received fax, but you can use an APF created with the
TApdFaxConverter component, or the APROLOGO.APF file in the EXAMPLES\DELPHI
or EXAMPLES\BUILDER directory, or an APF file created by the fax printer driver. Set the
TApdFaxUnpacker.InFileName property to the APF file’s path and file name. Next,
determine the format for the resulting file. The method to convert the document is
UnPackFileToXxxx, where Xxxx is the format. If you want to convert just a single page in the
APF file, use the UnPackPageToXxxx methods. The resulting file can be specified with the
OutFileName property. If you leave the property blank, the resulting file has the same path
and name as the APF file but an extension appropriate to the new file’s format.
Converting a Fax to Another Format 153

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example converts a user-selected APF file to a bitmap file and then converts
the same APF file into a TIFF file:

procedure TForm1.ConvertBtnClick(Sender : TObject);
begin

OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
if OpenDialog1.Execute then begin

ApdFaxUnpacker1.InFileName := OpenDialog1.FileName;
ApdFaxUnpacker1.OutFileName := 'C:\FAXIMAGE.BMP';
ApdFaxUnpacker1.UnpackFileToBitmap;
ApdFaxUnpacker1.OutFileName := 'C:\FAXIMAGE.TIF';
ApdFaxUnpacker1.UnpackFileToTiff;

end;
end;

Alternatively, you can use the APF TPicture registration to handle the fax conversion. To
use this technique, first make sure that the AdFaxCvt unit is in the uses clause of your
application. Then drop a TImage and a TOpenPictureDialog component on your form. Add
a new filter of “*.apf” with a filter name of “APF Files (*.apf)” to the Filter property of the
TOpenPictureDialog component. Drop a button on the form and add the following code to
its OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

if OpenPictureDialog1.Execute then
Image1.Picture.LoadFromFile (OpenPictureDialog1.FileName);

end;

This code will allow you to load an APF file and view it on the TImage component.

To save the fax image in a different format, drop a SavePictureDialog and another button on
the form. On the button’s OnClick event, add the following code:

procedure TForm1.Button2Click(Sender: TObject);
begin

if SavePictureDialog1.Execute then
Image1.Picture.SaveToFile (SavePictureDialog1.FileName);

end;

Related examples
None
54 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Viewing a Fax
This topic shows how to view an APF file.

Once you convert a document to the Async Professional Fax file format (APF) or receive a
fax you will want to view it. The APF file is a Group 3 fax, but it is in a proprietary format so
you’ll need to use the TApdFaxViewer component.

Required components
TApdFaxViewer

Prerequisite topics
None

Related components
TApdFaxConverter

TApdReceiveFax

What to do
The TApdFaxViewer component is designed to display APF files, to process keystrokes to
navigate through file, and to scale and rotate the fax image. The first step is to drop the
TApdFaxViewer component on a form and then specify the name of the APF file to view in
the TApdFaxViewer.FileName property. The fax file is loaded and displayed in the
component.
Viewing a Fax 155

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Navigation through the fax is achieved by keystrokes from the user or via code. Use the
FirstPage, NextPage, PrevPage and LastPage methods to display the appropriate pages of the
fax file. Selected portions of the fax image can be copied to the clipboard in bitmap format
with the CopyToClipboard method. The following example selects, loads, and displays an
APF file, navigates to the last page, and copies it to the clipboard:

procedure TForm1.ViewAndCopyLastPage;
begin

OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
if OpenDialog1.Execute then begin

ApdFaxViewer1.FileName := OpenDialog1.FileName;
ApdFaxViewer1.LastPage;
ApdFaxViewer1.SelectImage;
ApdFaxViewer1.CopyToClipboard;

end;
end;

Related examples
VIEWFAX.DPR
56 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Printing a Fax
This topic shows how to print an APF file.

The ability to print a fax file is almost a necessity for most fax applications. The
TApdFaxPrinter component provides this functionality.

Required components
TApdFaxPrinter

Prerequisite topics
None

Related components
TApdFaxPrinterStatus

TApdFaxPrinterLog

TApdFaxConverter

TApdFaxViewer

TApdReceiveFax

What to do
To print a fax, drop a TApdFaxPrinter component on the form, specify the file name in the
TApdFaxPrinter.FileName property, and then call the TApdFaxPrinter.PrintFax method.
This sends the specified APF file to the currently selected printer. To change which printer is
used, call the TApdFaxPrinter.PrintSetup method. You can also specify a print range with
the FirstPageToPrint and LastPageToPrint properties. This technique is adequate for most
applications, but there are a few things that can be added or changed to improve the results.

The TApdFaxPrinterStatus component displays a dialog showing the progress of the print
job. The TApdFaxPrinterLog component creates a text file that shows the time each print job
was started and finished. The FaxFooter and FaxHeader properties add a footer and header
on the printed page to provide additional information.
Printing a Fax 157

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example selects an APF file to print and allows the user to select which printer
is used to print the fax:

procedure TForm1.LoadAndPrintBtnClick(Sender : TObject);
begin

OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
if OpenDialog1.Execute then begin
ApdFaxPrinter1.FileName := OpenDialog1.FileName;
ApdFaxPrinter1.PrintSetup;
ApdFaxPrinter1.PrintFax;

end;

Related examples
None
58 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Installing the Fax Printer Driver Programmatically
This topic shows how to programmatically install the Async Professional fax printer driver.

The Async Professional fax printer driver operates the same as most other Windows printer
drivers. Print jobs from Windows applications are converted to a bitmap and then sent to
the printer driver. The printer driver converts the bitmap to a format the printer can
understand. For this to work, the printer driver must be installed correctly.

Required components
Async Professional Fax Printer Driver

Prerequisite topics
None

Related components
None

What to do
There are a two techniques that can be used to install a printer driver, manually and
programmatically. The manual technique relies on properly written INF files and the
experience of the user. The programmatic technique installs the printer driver automatically
for the user, and can react to any problems that occur during the installation. Installing the
printer driver from your code also gives your application a more polished appearance.

The grunt work of installing the fax printer driver is done in the PDRVINST.PAS unit. This
unit has two methods that install the printer driver. Which one is used depends on the
operating system on which the driver is being. To assist your installation program in
determining the operating system, the IsWinNT method in PDRVINST.PAS returns True if
running under Windows NT and False if it is not. For Windows NT/2000 installations, call
the InstallDriver32 method; for Windows 95/98/ME, call the InstallDriver method. These
methods install the fax printer driver and return a result code in the DrvInstallError
variable. The possible result codes are described in the PINST.DPR example project.
Installing the Fax Printer Driver Programmatically 159

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example determines if the application is running under Windows NT, calls
the appropriate installation method, and, when done, displays the results of the installation:

procedure TForm1.InstallFaxPrinterDriver;
begin

if IsWinNT then
InstallDriver32('')

else InstallDriver('APFGEN.DRV');
case DrvInstallError of

ecOK : ShowMessage('Printer driver installed successfully');
ecDrvDriverNotFound : ShowMessage(
'Printer driver not found');

else
ShowMessage('Other installation error : ' +

IntToStr(DrvInstallError));
end;

end;

Related examples
PINST.DPR
60 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Intercepting a Fax Printer Print Job
This topic shows how to detect a print job sent to the Async Professional fax printer driver.

The Async Professional fax printer driver converts Windows print jobs from any Windows
application to the Async Professional Fax (APF) file format. The fax printer driver generates
callbacks when the print job starts and when it is complete. To fax the APF file, or to save it,
you must detect the print job callbacks.

Required components
TApdFaxDriverInterface

Prerequisite topics
“Installing the Fax Printer Driver Programmatically” on page 159.

Related components
TApdSendFax

TApdFaxUnpacker

What to do
The TApdFaxDriverInterface component receives messages from the Async Professional fax
printer driver when the print job is received by the driver and when the print job processing
is complete. The OnDocStart event of the TApdFaxDriverInterface component fires when a
print job is sent to the fax printer driver from any Windows application. When the fax
printer driver has completed the conversion of the print job to an APF file, the OnDocEnd
event fires. The FileName property determines the path and name of the resulting APF file.

To intercept the print job callbacks from the Async Professional fax printer driver, a
TApdFaxDriverInterface component must be instantiated on the system. This is done by
dropping the component on an application that is running when the print job starts. The
application with the TApdFaxDriverInterface component can be a Tray icon, minimized,
hidden, or an inactive window, etc. What’s critical is that TApdFaxDriverInterface
component is created before the print job starts. The actual print job is nothing more than
converting the document into a Device Independent Bitmap (DIB) and then converting that
to an APF. When a print job is sent to the fax printer driver, the
TApdFaxDriverInterface.OnDocStart event fires. The OnDocStart event should be used to
Intercepting a Fax Printer Print Job 161

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
set the path and file name of the resulting APF. When the print job is complete, the
TApdFaxDriverInterface.OnDocEnd event fires. The OnDocEnd event signals when the
APF is complete and ready for further processing.

The following example intercepts the fax printer driver print jobs, saves the resulting APF in
a specific path, and then sends the fax:

procedure TForm1.ApdFaxDriverInterface1DocStart(
Sender : TObject);

begin
ApdFaxDriverInterface1.FileName := 'C:\FAX\SENDME.APF';

end;

procedure TForm1.ApdFaxDriverInterface1DocEnd(Sender : TObject);
begin

ApdSendFax1.FaxFile := ApdFaxDriverInterface1.FileName;
ApdSendFax1.PhoneNumber := '260-7151';
ApdSendFax1.StartTransmit;

end;

Related examples
FAXMON.DPR

FXCLIENT.DPR
62 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Faxing a Document from your Application
This topic shows how to fax a document from within your application using the fax printer
driver.

If you are creating documents to fax from within your application, there are two techniques
you can use: convert the document to the Async Professional Fax file format (APF) then
process it, or print the document to the Async Professional fax printer driver.

Required components
TApdComPort

TApdFaxDriverInterface

TApdSendFax

Prerequisite topics
“Setting Up a Comport” on page 74.

“Configuring a Device for Faxing” on page 142.

“Sending Faxes to One Recipient” on page 143.

“Intercepting a Fax Printer Print Job” on page 161.

Related components
TApdFaxStatus

TApdFaxLog

What to do
In order to fax a document using the Async Professional fax components, the document
must be in the Async Professional Fax file format (APF). If the current document format is
one of the formats supported by the TApdFaxConverter component, the document can be
converted without the fax printer drivers. If the format is not one handled by the
TApdFaxConverter, you must convert it using the fax printer driver.

The process of converting and faxing a document in a format supported by the
TApdFaxConverter component begins with converting the document to the APF file format
with the TApdFaxConverter.ConvertToFile method. The method does not return until after
Faxing a Document from your Application 163

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
the document has been converted; therefore, the call to TApdSendFax.StartTransmit can be
made immediately afterwards in your code (i.e., you don’t have to force a delay or wait for an
event to fire).

The following example saves the contents of a TMemo component, converts the saved
document to the APF file format, and then faxes the APF file:

procedure TForm1.ConvertAndFaxBtnClick(Sender : TObject);
begin

Memo1.Lines.SaveToFile('C:\OUTFAX.TXT');
ApdFaxConverter1.DocumentFile := 'C:\OUTFAX.TXT';
ApdFaxConverter1.InputDocumentType := idText;
ApdFaxConverter1.OutFileName := 'C:\OUTFAX.APF';
ApdFaxConverter1.ConvertToFile;
ApdSendFax1.FaxFile := ApdFaxConverter1.OutFileName;
ApdSendFax1.PhoneNumber := '260 7151';
ApdSendFax1.StartTransmit;

end;

If you are printing from your application to the Async Professional fax printer driver, you
must correctly select the fax printer driver programmatically. The TPrinter object contains
the printers that are installed on the system. It would seem a simple matter to select the
appropriate printer from the TPrinter.Printers string list. The difficulty comes from the way
the printer canvas is configured once a new printer is selected. When a new printer is
selected with the TPrinter object, the capabilities of the default Windows printer are
maintained in the new printer’s canvas. This behavior is not limited to the Async
Professional fax printer driver, but can be seen in all printers selected this way. To fix the
problem, use the GetPrinter and SetPrinter API methods. Once the printer is correctly
selected and configured, print the document to the Async Professional printer driver with
the same methods used to print to any other Windows printer driver. If required, use the
TApdFaxDriverInterface component to intercept the print job so the resulting APF file can
be further processed or faxed.There are also two Async Professional fax printer driver, one
for Windows 95/98/ME and another for Windows NT/2000. These have different names, so
you will want to look for either of the printers. In Windows 95/98/ME, the printer is named
“Print to Fax on PRINTFAX:”. In Windows NT/2000, the printer is named “APF Fax
Printer.”
64 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example shows how to find the Async Professional fax printer driver and
correctly select it with the Delphi TPrinter object:

with Printer do begin
I := PrinterIndex;
P := Printers.IndexOf('Print to Fax on PRINTFAX:');
if P = -1 then
P := Printers.IndexOf('APF Fax Printer');

if P = -1 then begin
ShowMessage(

'The TurboPower Fax Printer was not found'#13#10+
'The print job will not be submitted');

Exit;
end else begin
PrinterIndex := P;
GetPrinter(Device, Name, Port, DevMode);
SetPrinter(Device, Name, Port, 0);

end;

Once the printer is correctly selected and configured, print the document to the Async
Professional printer driver with the same methods used to print to any other Windows
printer driver. If required, use the TApdFaxDriverInterface component to intercept the print
job so the resulting APF file can be further processed or faxed.

Related examples
None
Faxing a Document from your Application 165

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Creating a Fax Client
This topic shows how to create a functional TApdFaxClient component.

The fax server components in Async Professional need fax jobs to process; otherwise, they
will just be a pretty icon on the component palette. To create fax jobs you will need the
TApdFaxClient component.

Required components
TApdFaxClient

Prerequisite topics
“Overview: Using the Fax Server Components” on page 50.

“Intercepting a Fax Printer Print Job” on page 161.

Related components
TApdFaxServer

TApdFaxServerManager

TApdFaxDriverInterface

What to do
The TApdFaxClient component creates fax jobs. The properties of the TApdFaxClient
component are used for the fields in the job header, which applies to all recipients of the job;
and the recipient header, which applies to a specific recipient. A simple fax client can be
created that intercepts fax printer print jobs and makes a fax job file (APJ), ready for
submission to a TApdFaxServerManager.

For the sake of clarity, we’ll do a simple single-recipient fax job each time a print job is sent
to our fax printer driver. Create a new project and drop a TApdFaxDriverInterface,
TApdFaxClient, and a TButton on the form. Now, we’ll need a way for the user to enter the
minimum information about the job and recipient. Drop two TEdit components on the
form, and name them “edtRecipient” and “edtPhone”, with a corresponding TLabel for
each. Change the caption of the edtRecipient’s label to “Recipient name”; and the caption of
edtPhone’s label to “Phone number”. Change the caption of the button to “OK.”
66 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The TApdFaxDriverInterface.OnDocEnd event will fire when the print job is complete, so
we’ll do some of the background work there. We will use the name of the document that was
just printed as the FaxJobName, and will use the APF that the printer driver just created as
the FaxFileName. Make your OnDocEnd event look something like the following:

procedure TForm1.ApdFaxDriverInterface1DocEnd(Sender: TObject);
begin

edtRecipient.Text := '';
edtPhone.Text := '';
ApdFaxClient1.CoverFileName := '';
ApdFaxClient1.FaxFileName := ApdFaxDriverInterface1.FileName;
ApdFaxClient1.HeaderLine := '$S sent by $F to $R on $D $T';
ApdFaxClient1.HeaderTitle := ApdFaxDriverInterface1.DocName;
ApdFaxClient1.JobFileName := 'C:\Faxes\' + NextJobFileName;
ApdFaxClient1.JobName := ApdFaxDriverInterface1.DocName;
ApdFaxClient1.ScheduleDateTime := Now;
ApdFaxClient1.Sender := 'Me';

end;

Everything is set up now, except for the recipient’s name and phone number. Use the OK
button’s OnClick event to retrieve that information from the edit controls and create the job
file.

procedure TForm1.Button1Click(Sender: TObject);
begin

ApdFaxClient1.HeaderRecipient := edtRecipient.Text;
ApdFaxClient1.PhoneNumber := edtPhone.Text;
ApdFaxClient1.MakeFaxJob;

end;

That’s all there is to it, you’ve just created a fax client.

There are a few things about this code that could use a bit more explanation. The
HeaderLine is using replaceable tags. $S will be replaced by the ApdFaxClient.HeaderTitle
property; $F will be replaced by the ApdFaxClient.Sender property; $R will be replaced by
the ApdFaxClient.HeaderRecipient property; $D and $T will be replaced by the date and
time that the fax is sent. This example does not do it, but you could use the same technique
to customize a cover file.

The ApdFaxClient.JobFileName property assignment uses a NextJobFileName function,
which is not defined here. The purpose of this function is to return a unique name for the
fax job file.

You could expand upon this example by letting the user enter several recipients. To add
another recipient, call the TApdFaxClient.AddRecipient method.
Creating a Fax Client 167

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Related examples
FXCLIENT.DPR

FXSRVR.DPR
68 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Setting Up a Fax Server
This topic shows how to set up a TApdFaxServer component and TApdFaxServerManager
component.

Fax servers must be able to receive, send, and schedule faxes. The Async Professional fax
server components are there to make your job easier by handling the integration for you.

Required components
TApdComPort

TApdFaxServer

TApdFaxServerManager

Prerequisite topics
“Overview: Using the Fax Server Components” on page 50.

“Creating a Fax Client” on page 166.

Related components
TApdFaxClient

TApdSendFax

TApdReceiveFax

What to do
Fax documents used with the Async Professional fax server components are in the Async
Professional Fax Job format (APJ). This format embeds information about the entire fax job,
information about individual recipients of the fax, cover file text, and the actual APF data.

The TApdFaxServer component connects to the faxmodem through the TApdComPort (or
optionally through the TApdTapiDevice).

To enable monitoring for incoming faxes, set the TApdFaxServer.Monitoring property to
True. The TApdFaxServer will answer incoming calls, negotiate fax session parameters, and
receive the fax. The directory where received faxes will be saved is specified by the
TApdFaxServer.DestinationDir property. You can set the FaxNameMode property to
fnCount and the faxes will be named sequentially; or set that property to fnMonthDay and
Setting Up a Fax Server 169

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
the faxes will be named according to the date and time that the fax was received. The
OnFaxServerFinish event will fire for each fax received successfully; or the
OnFaxServerFatalError event will fire if the fax failed.

Scheduling and sending faxes is a bit more involved, and requires a TApdFaxServerManager.
The TApdFaxServerManager component manages a specific directory for fax jobs. The
directory that the TApdFaxServer component manages is specified by the MonitorDir
property. (The fax jobs can be created by the TApdFaxClient and copied to the monitored
directory). Any given directory can be monitored by only one TApdFaxServerManager
component. If more than one TApdFaxServerManager components try to look at the same
directory, an ecAlreadyMonitored exception will be raised. The TApdFaxServer component
requests fax jobs from the TApdFaxServerManager component at intervals specified by the
TApdFaxServer.SendQueryInterval property. If that property (measured in seconds) is 0,
the TApdFaxServer will not ask for fax jobs. The OnFaxServerFinish event will fire when a
fax was sent successfully, and the OnFaxServerFatalError event will fire if the fax failed.

Create a new project and drop a TApdComPort component on the form. Set the
ComNumber property as required for your faxmodem. Next, drop a TApdFaxServer
component on the form and set the Monitoring property to True, the SendQueryInterval
property to 60, and the DestinationDir property to the directory where you want received
faxes to be stored. This will make the TApdFaxServer component listen for incoming faxes,
and look for new fax jobs every 60 seconds. Drop a TApdFaxServerManager on the form
and set the MonitorDir property to a directory where you want to hold pending fax jobs.
Compile and run the project. Incoming faxes will be automatically received into the
directory specified by the DestinationDir property. To send faxes, create the fax job file
using the TApdFaxClient component and copy the APJ file to the directory specified by the
TApdFaxServerManager.MonitorDir property.

Related examples
FXCLIENT.DPR

FXSRVR.DPR
70 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Sending and Receiving Faxes with TApdFaxServer
This topic shows how to configure the Async Professional Fax Server and how to use it for
receiving and sending faxes.

The TApdFaxServer component is the faxing engine for the Fax Server Components, and
handles the physical communication with the fax modem to send and receive faxes. Since
this component can both transmit and receive faxes, it shares many properties with the
ApdSendFax and ApdReceiveFax components.

Required components
TApdFaxServer

TApdFaxServerManager

Prerequisite topics
“Setting Up a Comport” on page 74.

“Selecting and Configuring a Modem” on page 85.

Related components
TApdAbstractFax

TApdComPort

TApdReceiveFax

TApdSendFax

What to do
Configuration for faxing
The TApdFaxServer component is similar to TApdAbstractFax in that it accesses the
physical faxmodem through the ApdComPort component. Set the
ApdComPort.ComNumber property to the port enumeration of the faxmodem that you
wish to use. If an ApdTapiDevice is assigned to the TapiDevice property, the port will be
Sending and Receiving Faxes with TApdFaxServer 171

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
opened through the TAPI interface. When a fax is ready to be sent, or the component is
monitoring for incoming faxes, the following TApdComPort properties are forced to these
values:

ApdComPort.DataBits := 8;
ApdComPort.StopBits := 1;
ApdComPort.Parity := pNone;
ApdComPort.Baud := 19200;
ApdComPort.InSize := 8192;
ApdComPort.OutSize := 8192;
ApdComPort.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];

The faxmodem will be configured with the same configuration string as the
TApdAbstractFax. If your modem requires special configuration, set the ModemInit
property to your special configuration.

Receiving faxes
The ApdFaxServer component receives faxes by monitoring for incoming calls. To begin
monitoring, set the Monitoring property to True. To stop monitoring, set the Monitoring
property to False. When an incoming fax is detected, the call is answered, and the received
fax is saved to the DestinationDir folder, and named according to the FaxNameMode
property. If the call is a fax call, and the fax is successfully received, the OnFaxServerFinish
event will fire; otherwise, the OnFaxServerFatalError event will fire. If the fax was successful,
the ApdFaxServer will continue monitoring for new calls until Monitoring is explicitly set to
False. If the call was unsuccessful, all faxing operations are disabled so the problem can be
addressed. The resulting fax file is in the standard Async Professional APF format.
72 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Sending faxes
The ApdFaxServer component sends faxes by querying an ApdFaxServerManager
component for fax jobs. Call the ForceSendQuery method to query the
TApdFaxServerManager component manually. Set the SendQueryInterval property to a
non-zero number to enable automatic querying. To stop querying for new fax jobs set the
SendQueryInterval property to 0. Every SendQueryInterval seconds, the
ApdFaxServerManger will be queried for fax jobs that are ready to be sent. If a fax job is
ready, it will be sent immediately. Since the TApdFaxServerManager.MonitorDir is scanned
each time a query is made, it is a good idea to keep SendQueryInterval relatively large (30
seconds or above). If the fax is successfully sent the OnFaxServerFinish event will fire. If the
fax was unsuccessful, the OnFaxServerFatalError event will fire and all faxing operations
will be disabled so the problem can be addressed. The fax job file is in the Async
Professional APJ format, which is discussed fully in Chapter 16 of the Async Professional
Reference Guide.

Related examples
FXSRVR.DPR
Sending and Receiving Faxes with TApdFaxServer 173

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Detecting DTMF
This topic shows how to detect Dual Tone Modulation Frequencies (DTMF).

DTMF tones are the tones that are generated each time a phone number button is pressed.
These tones are often used in automated voice mail, information gathering, fax on demand,
and fax back applications.

Required components
TApdComPort

TApdTapiDevice

Prerequisite topics
“Setting Up a Comport” on page 74.

“Selecting and Configuring a Modem” on page 85.

Related components
None

What to do
The DTMF detection requires a voice modem and a voice-capable TAPI service provider. If
your setup supports this, you can detect which keys are pressed at the telephone key pad
during a connection.

The EnableVoice property of the TApdTapiDevice component determines whether the
modem makes a connection in voice mode or data mode. DTMF tones are available only in
voice mode, so EnableVoice must be True. When a DTMF tone is detected, the
TApdTapiDevice.OnTapiDTMF event fires, passing the key that was pressed in the Digit
parameter. There are twelve keys on a telephone number pad; they are passed as ‘0’ through
‘9’, ‘*’ or ‘#’.
74 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example answers incoming phone calls in voice mode and display the keys
that the caller presses in an edit control:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdTapiDevice1.SelectDevice;
ApdTapiDevice1.EnableVoice := True;
ApdTapiDevice1.AutoAnswer;

end;

procedure TForm1.ApdTapiDevice1TapiDTMF(
CP : TObject; Digit : Char; ErrorCode : Integer);

begin
Edit1.Text := Edit1.Text + Digit;

end;

Related examples
EXVOICE.DPR
Detecting DTMF 175

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Recording a WAVE File
This topic shows how to record a WAVE file through a TAPI device.

The ability to record voice messages is a vital feature in any voice mail application, and is a
good extra for other communications programs.

Required components
TApdComPort

TApdTapiDevice

Prerequisite topics
“Setting Up a Comport” on page 74.

“Selecting and Configuring a Modem” on page 85.

Related components
None

What to do
WAVE file recording requires a voice modem and a voice-capable TAPI service provider. If
your setup supports this, you can record incoming messages in WAVE file format.

The EnableVoice property of the TApdTapiDevice component determines whether or not
the voice extensions of TAPI are enabled. Since WAVE recording depends on the TAPI voice
extensions, set EnableVoice to True. Once you have determined when to begin recording the
WAVE file, call the TApdTapiDevice.StartWaveRecord method. The incoming sounds, be
they voice, tones, whistling, or dogs barking, are stored in a wave input buffer. The size of
the wave input buffer is specified by the MaxMessageLength property and is the number of
seconds of wave data to record. Once the wave input buffer is full, or the StopWaveRecord
method is called, the OnTapiWaveNotify event fires with the Msg parameter equal to
waDataReady, letting you know the wave data is ready to be processed. To save the contents
of the wave input buffer, call the SaveWaveFile method. The FileName parameter is the
name of the file to be saved, while the Overwrite parameter determines whether an existing
file of the same name is replaced with the new file.
76 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example records a message from a voice connection in response to a button
click event and then saves the recorded wave data once the input buffer is full:

procedure TForm1.RecordMessageBtnClick(Sender : TObject);
begin

ApdTapiDevice1.StartWaveRecord;
end;

procedure TForm1.ApdTapiDevice1TapiWaveNotify(CP : TObject;
Msg : TWaveMessage);

begin
if Msg = waDataReady then

ApdTapiDevice1.SaveWaveFile('F:\RECORD.WAV', True);
end;

Related examples
EXRECORD.DPR
Recording a WAVE File 177

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Playing WAVE Files
This topic shows how to play a WAVE file over a TAPI device.

An automated voice system requires voice prompts to be sent to the other side of the
connection to let the person know what actions are available or required. This is often seen
in voice mail systems where the caller is given the choice to press a number on their
telephone key pad to select an extension, voice mailbox, or further menu selections.

Required components
TApdComPort

TApdTapiDevice

Prerequisite topics
“Setting Up a Comport” on page 74.

“Selecting and Configuring a Modem” on page 85.

Related components
None

What to do
Playing a WAVE file through a TAPI device requires a voice modem with a valid wave output
driver, and a voice-capable TAPI service provider. If your setup supports this, you can play
WAVE files over the phone to provide voice prompts or other information.

The EnableVoice property of the TApdTapiDevice component determines whether or not
the voice extensions of TAPI are enabled. Since playing WAVE files depends on the TAPI
voice extensions, set EnableVoice to True.

The TApdTapiDevice.PlayWaveFile method starts playing the wave file specified in the
FileName parameter of the method. The OnTapiWaveNotify event fires when the wave file is
initially opened and the Msg parameter is set to waPlayOpen. When the wave file is closed,
the Msg parameter is set to waPlayClose. If the wave file has finished playing, the Msg
parameter is set to waPlayDone.
78 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The following example plays a wave file when a connection is made:

procedure TForm1.ApdTapiDevice1TapiConnect(Sender : TObject);
begin

ApdTapiDevice1.PlayWaveFile('GREETING.WAV');
end;

Related examples
EXVOICE.DPR
Playing WAVE Files 179

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Installing SAPI4
This topic shows how to install SAPI 4.

The TApdSapiEngine component utilizes the services of SAPI (Speech API) version 4.
Microsoft has released SAPI 5, but there are several reasons why APRO uses SAPI 4 instead:
SAPI 5 is not available for Windows 95, SAPI 5 still has some design issues that are being
worked on, and SAPI 4 is usually installed by default in Windows ME/2000.

Prerequisite topics
None

Required components
None

What to do
The TApdSapiEngine component utilizes the services of SAPI 4 (Speech API). SAPI 4 must
be installed prior to use. The SAPI 4 installer is not provided in the APRO installation due to
possible licensing issues, however it can be downloaded from
http://www.microsoft.com/speech/. For distribution to your customers, or on your
development machine, download SPCHAPI.EXE, which contains the core SAPI 4 engines.
The SAPI 4a SDK contains all of the required files, as well as several additional utilities and
Visual C++, Visual Basic and ActiveX examples.

Once the SAPI 4 API (SPCHAPI.ZIP) has been downloaded, it can be installed through the
following procedures. Be sure to check the documentation provided on Microsoft’s site for
updated installation instructions and system requirements. Microsoft provides these
instructions for installing the SAPI 4 supporting components:

• Have your setup program install SpchAPI.exe into a temporary directory.

• Run SpchAPI.exe. It is a self-extracting executable that will install all the necessary
files and registry entries.

• Delete the temporary copy of SpchAPI.exe after it has been installed.

• Your setup program does not need to uninstall the Microsoft Speech API components
since it is a system component. Users wishing to uninstall the Microsoft Speech API
can do so through the Control Panel, Add/Remove Programs.

SpchAPI.exe has several options to somewhat customize the install process.
80 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The SpchAPI.exe installer is provided by Microsoft, and contains the speech engines.
Microsoft also provides these engines in the SAPI 4 SDK, which can also be downloaded
from http://www.microsoft.com/speech/. The SAPI 4 SDK is not required, although the
supplied help files do provide more details on the inner workings and options than the
APRO documentation.

Related examples
None
Installing SAPI4 181

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Setting up Speech Synthesis
This topic shows how to set up speech synthesis.

The TApdSapiEngine component provides speech synthesis and recognition capabilities.
The Speak method of this component provides an easy way to add speech synthesis to your
programs.

Prerequisite topics
“Installing SAPI4” on page 180.

Required components
TApdSapiEngine

What to do
The TApdSapiEngine component is designed to provide support for speech synthesis and
recognition. To make use of this component for speech synthesis, drop a TApdSapiEngine
component on your form. The Speak method of the TApdSapiEngine component
configures the SAPI engine and instructs it to synthesize the text provided in the string
parameter to the method. The following code will cause the SAPI engine speak to the default
audio output device:

procedure TForm1.Button1Click(Sender: TObject);
begin

ApdSapiEngine1.Speak ('All your base are belong to us!');
end;

Related examples
EXSAPI.DPR
82 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Selecting Speech Synthesis Voices
This topic shows how to select voices for speech synthesis.

The TApdSapiEngine component provides speech synthesis and recognition capabilities.
Most speech synthesis engines provide a variety of voices. These voices can be accessed via
the SSVoices property of the TApdSapiEngine component.

Required components
TApdSapiEngine

Prerequisite topics
“Installing SAPI4” on page 180.

“Setting up Speech Synthesis” on page 182.

What to do
Drop a TApdSapiEngine component of the form. The SSVoices property of the
TApdSapiEngine component lists all the available speech synthesis voices and engines. In
addition, subproperties of the SSVoices property provide additional information about the
voices.

The following example will list all the speech synthesis voices to a TMemo component:

procedure TForm1.Button1Click (Sender : TObject);
var

i : Integer;

begin
Memo1.Lines.Clear;
for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do

Memo1.Lines.Add (ApdSapiEngine1.SSVoices[i]);
end;

To select a voice, set the CurrentVoice property of the Voices class to the index of the voice
you want to use. Remember that the voices are numbered from 0. The following code will
use the third voice.

ApdSapiEngine1.SSVoices.CurrentVoice := 2;

It is often necessary to select a speech synthesis engine that has specific features. Most
commonly, you will need to find engines that have been optimized for either PC or
telephony usage.
Selecting Speech Synthesis Voices 183

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following code will list only those engines that are optimized for PC use:

procedure TForm1.Button1Click (Sender : TObject);
var

i : Integer;
begin

for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
if tfPCOptimized in

ApdSapiEngine1.SSVoices.Features[i] then
Memo1.Lines.Add (ApdSapiEngine1.SSVoices[i]);

end;

A simple modification to the code will list only those engines that optimized for telephony
usage:

procedure TForm1.Button1Click (Sender : TObject);
var

i : Integer;
begin

for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
if tfPhoneOptimized in

ApdSapiEngine1.SSVoices.Features[i] then
Memo1.Lines.Add (ApdSapiEngine1.SSVoices[i]);

end;

Related examples
EXSAPI.DPR
84 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Setting up Speech Recognition
This topic shows how to set up speech recognition.

The TApdSapiEngine component provides speech synthesis and recognition capabilities.
The Listen method, in conjunction with a vocabulary, provides an easy way to add speech
synthesis to your programs.

Prerequisite topics
“Installing SAPI4” on page 180.

“Setting up Speech Synthesis” on page 182.

Required components
TApdSapiEngine

What to do
Drop a TApdSapiEngine component on the form. Before speech recognition can occur, a
vocabulary must be set up. This is done through the WordList property. The WordList
property is a TStringList that contains words that you want to recognize. If the Dictation
property is False, only words contained in WordList will be recognized; if Dictation is True
WordList is ignored and SAPI will attempt to recognize all words. Dictation mode is usually
much slower, and is very much less accurate.

Determine which words you want to recognize first. If you are requesting numeric input,
add “one”, “two”, “hundred”, etc. Once the vocabulary is set up, a call to Listen will start the
speech recognition. When SAPI recognizes a word, the OnPhraseFinish event will be
generated and the recognized word is passed in the Phrase parameter on the event handler.
Setting up Speech Recognition 185

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example listens for “red”, “green”, or “blue.” If one of those words are spoken,
it will be added to a memo.

procedure TForm1.Button1Click (Sender : TObject);
begin

{ Set up the vocabulary }
ApdSapiEngine1.WordList.Clear;
ApdSapiEngine1.WordList.Add ('red');
ApdSapiEngine1.WordList.Add ('blue');
ApdSapiEngine1.WordList.Add ('green');
{ Listen }
ApdSapiEngine1.Listen;

end;

procedure TForm1.ApdSapiEngine1PhraseFinish (
Sender : TObject; const Phrase : WideString);

begin
if Phrase <> '' then

Memo1.Lines.Add (Phrase);
end;

To stop speech recognition, call the StopListening method of the TApdSapiEngine
component.

Related examples
EXSAPI.DPR
86 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Selecting a Speech Recognition Engine
This topic shows how to select an engine for speech recognition.

The TApdSapiEngine component provides speech synthesis and recognition capabilities.
Frequently multiple engines with differing features are provided for speech recognition.

Required components
TApdSapiEngine

Prerequisite topics
“Installing SAPI4” on page 180.

“Setting up Speech Recognition” on page 185.

What to do
Drop a TApdSapiEngine component of the form. The SREngines property of the
TApdSapiEngine component lists all the available speech recognition engines. In addition,
subproperties of the SREngines property provide additional information about the engines.

The following example will list all the speech recognition engines in a TMemo component:

procedure TForm1.Button1Click (Sender : TObject);
var

i : Integer;
begin

Memo1.Lines.Clear;
for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do

Memo1.Lines.Add (ApdSapiEngine1.SREngines[i]);
end;

To select an engine, set the CurrentEngine property of the SREngines class to the index of
the engine you want to use. Remember that the engines are numbered from 0. The following
code will use the third engine:

ApdSapiEngine1.SSVoices.CurrentEngine := 2;

It is often necessary to select a speech recognition engine that has specific features. Most
commonly, you will need to find engines that have been optimized for either PC or
telephony usage.
Selecting a Speech Recognition Engine 187

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following code will list only those engines that are optimized for PC use:

procedure TForm1.Button1Click (Sender : TObject);
var

i : Integer;
begin

for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
if sfPCOptimized in

ApdSapiEngine1.SREngines.Features[i] then
Memo1.Lines.Add (ApdSapiEngine1.SREngines[i]);

end;

A simple modification to the code will list those engines that optimized for telephony usage:

procedure TForm1.Button1Click (Sender : TObject);
var

i : Integer;
begin

for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
if sfPhoneOptimized in

ApdSapiEngine1.SREngines.Features[i] then
Memo1.Lines.Add (ApdSapiEngine1.SREngines[i]);

end;

Related examples
EXSAPI.DPR
88 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Using the Speech Recognition VU Meter
This topic shows how to use the speech recognition VU meter to provide feedback to the
user.

The speech recognition functions TApdSapiEngine provide an OnVUMeter event that can
be used to provide feedback to the user when speech recognition is active.

Required components
TApdSapiEngine

Prerequisite topics
“Installing SAPI4” on page 180.

“Setting up Speech Recognition” on page 185.

What to do
Drop a TApdSapiEngine component on the form. The OnVUMeter event will fire
periodically when the SAPI engine is listening.

The following example will expand upon the example developed in “Setting up Speech
Recognition”. Add a TProgressBar component to the form. Set the Orientation of the
progress bar to pbVertical and adjust its size accordingly. Set the progress bar’s Max
property to 65535.

procedure TForm1.Button1Click (Sender : TObject);
begin

{ Set up the vocabulary }
ApdSapiEngine1.WordList.Clear;
ApdSapiEngine1.WordList.Add ('red');
ApdSapiEngine1.WordList.Add ('blue');
ApdSapiEngine1.WordList.Add ('green');
{ Listen }
ApdSapiEngine1.Listen;

end;
Using the Speech Recognition VU Meter 189

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
procedure TForm1.ApdSapiEngine1PhraseFinish (Sender : TObject;
const Phrase : WideString);

begin
if Phrase <> '' then

Memo1.Lines.Add (Phrase);
end;

procedure TForm1.ApdSapiEngine1VUMeter (Sender : TObject;
Level : Integer);

begin
ProgressBar1.Position := Level;

end;

Related examples
EXSAPI.DPR
90 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Using Speech Synthesis and Recognition Over a Phone
This topic shows how to provide speech capabilities over a voice telephony connection.

Speech capabilities over a voice connection are provided by a specialized TAPI device, the
TApdSapiPhone. This component provides all the functionality of TAPI, but is also capable
of routing speech synthesis or recognition through the phone line.

Required components
TApdComPort

TApdSapiEngine

TApdSapiPhone

Prerequisite topics
“Installing SAPI4” on page 180.

“Configuring a TAPI Device” on page 91.

“Setting up Speech Synthesis” on page 182.

“Selecting Speech Synthesis Voices” on page 183.

“Setting up Speech Recognition” on page 185.

“Selecting a Speech Recognition Engine” on page 187.

What to do
The TApdSapiPhone device handles the phone connection exactly like a TApdTapiDevice.
When a connection is made to this device, it will automatically configure a linked
TApdSapiEngine component to route it’s speech synthesis and recognition over the phone
line.

The following example will place the TApdSapiPhone in auto-answer mode. When a call is
made to it, it will say a few words over the phone and hang up.
Using Speech Synthesis and Recognition Over a Phone 191

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
It is important to make sure that the speech synthesis and recognition engines that you are
using support telephony. The SetTelephoneSS and SetTelephoneSR methods below will
select the first telephone capable engines. Note that the TApdSapiPhone component requires
a voice-capable modem and either Unimodem/V or Unimodem/5.

procedure TForm1.Button1Click(Sender: TObject);
procedure SetTelephoneSS;
{ Set the speech synthesis engine to the first telephone

optimized voice. This assumes that at least one telephone
optimized voice is installed. }

var
i : Integer;

begin
for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
if tfPhoneOptimized in

ApdSapiEngine1.SSVoices.Features[i] then begin
ApdSapiEngine1.SSVoices.CurrentVoice := i;
Exit;

end;
end;

procedure SetTelephoneSR;
{ Set the speech recognition engine to the first telephone

optimzied engine. This assumes that at least one
telephone optimized engine is installed. }

var
i : Integer;

begin
for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
if sfPhoneOptimized in

ApdSapiEngine1.SREngines.Features[i] then begin
ApdSapiEngine1.SREngines.CurrentEngine := i;
Exit;

end;
end;

begin
{ Make sure that telephone optimized voices are in use }
SetTelephoneSS;
SetTelephoneSR;
{ Connect the phone to a SAPI engine }
ApdSapiPhone1.SapiEngine := ApdSapiEngine1;
{ Configure the phone and answer }
ApdSapiPhone1.AnswerOnRing := 2;
ApdSapiPhone1.AutoAnswer;

end;
92 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
procedure TForm1.ApdSapiPhone1TapiConnect(Sender: TObject);
begin

ApdSapiEngine1.Speak ('All your base are belong to us!');
ApdSapiEngine1.WaitUntilDoneSpeaking;
ApdSapiPhone1.CancelCall;

end;

Adding speech recognition to this is easy. Make a call to ApdSapiPhone1.Listen. The
OnPhraseFinish event will fire when words are recognized. StopListening is used to end the
speech recognition.

A word of caution, most telephony connections are half duplex. You cannot have the SAPI
engine speaking and listening at the same time.

Related examples
EXSAPIPH.DPR
Using Speech Synthesis and Recognition Over a Phone 193

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Asking the User for Information Over a Voice Connection
This topic shows how to ask the user questions using the TApdSapiEngine and
TApdSapiPhone components.

The TApdSapiPhone component provides several methods for asking the user for
information. These methods can be called any time that a call is active.

Required components
TApdComPort

TApdSapiEngine

TApdSapiPhone

Prerequisite topics
“Installing SAPI4” on page 180.

“Configuring a TAPI Device” on page 91.

“Setting up Speech Synthesis” on page 182.

“Selecting Speech Synthesis Voices” on page 183.

“Setting up Speech Recognition” on page 185.

“Selecting a Speech Recognition Engine” on page 187.

“Using Speech Synthesis and Recognition Over a Phone” on page 191.

What to do
After a connection has been made, call one of the AskFor methods of the TApdSapiPhone
component. Several of these are provided for the most common questions that a user may
need to be asked. These are, AskForDate, AskForExtension, AskForList,
AskForPhoneNumber, AskForSpelling, AskForTime, and AskForYesNo.
94 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
The AskFor methods will return when some reply is received from the user. The following
example shows how to use AskForYesNo. It assumes that a phone call is already in progress:

procedure TForm1.Button2Click(Sender: TObject);
var

Reply : Boolean;
begin

case ApdSapiPhone1.AskForYesNo(Reply, 'Say yes or no') of
prOk : { The user response is in Reply. }
prAbort : { A fatal error when getting the response }
prNoResponse : { The user did not respond }
prOperator : { The user asked for an operator }
prHangUp : { The user asked to hang up }
prBack : { The user wants to go back a step }
prCheck : { The user gave an ambiguous reply }
prError : { There was a recoverable error }
prUnknown : { There was an inexplicable reply }

end;
end;

The AskFor methods return a variety of codes. These codes need to be handled by your
application. Some of them (prOperator, prBack, and prHangUp) can be turned off in the
TApdSapiPhone Options property.

Related examples
EXSAPIPH.DPR
Asking the User for Information Over a Voice Connection 195

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
RS-485 Support
This topic discusses how to use the TApdComport with an RS-485 serial port.

Required components
TApdComPort

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
None

What to do
RS-485 is a standard for multidrop communications. It’s typically used when a computer
needs to communicate with several devices. RS-485 can be used over greater distances than
RS-232 because of its lower impedance requirements and the way voltage is represented on
the lines. RS-485 also allows several devices to be connected in a daisy chain fashion. The
devices on the line can either be receiving or sending data, but not both. In order to send
data—the device has to take control of the line, send the data, and quickly release the line so
it can listen for replies from the remote devices.

RS-485 boards for PCs handle this transition between sending and receiving in a couple
different ways (and most boards allow you to configure the board for the option that best
suits your application).
96 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
One method is placing your data in a packet with special characters. This method has always
worked fairly well with APRO, but has the limitation that the special characters can’t exist in
your data. Another quite popular method is known as “RTS Control”—where the RTS line
is raised, the data is sent, and RTS is immediately lowered. This method has the advantage of
not requiring special characters, but is a bit more difficult to handle from a timing point of
view. If RTS is lowered too soon (while characters are still in the UART), data can be lost. If
RTS is lowered too late, a response from a remote device could be lost.

Due to these tight timing requirements, the TApdComport has a RS485Mode property that
can be set to handle RTS control (as well as can be done under Windows without a special
device driver)—and will work in the vast majority of situations.

Related examples
None
RS-485 Support 197

1

1

1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Setting Up a Terminal
This topic shows how to configure a TAdTerminal component to display incoming and
outgoing information.

The ability to display all characters being sent and received is an integral part of most
communications applications. The TAdTerminal component displays the incoming and
outgoing characters as they are received at the comport.

Required components
TApdComPort

TAdTerminal

Prerequisite topics
“Setting Up a Comport” on page 74.

Related components
TAdTTYEmulator

TAdVT100Emulator

What to do
Drop a TAdTerminal component on the form. If a TApdComPort component is already on
the form, it is automatically associated with the TAdTerminal.ComPort property and the
two components are linked together. The TAdTTYEmulator and the TAdVT100Emulator
components can be used to provide terminal emulation for the TAdTerminal. If an emulator
component is not specified, the TAdTerminal component will create its own internal
TAdTTYEmulator instance to provide generic emulation services.

If the TApdComPort.AutoOpen property is True, the TAdTerminal component opens the
port when it is created, enabling you to type commands immediately. If AutoOpen is False,
the terminal window is inactive until the port is opened. Change the TAdTerminal.Active
property to False to disable displaying characters or True to display all available characters.
98 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
To insert characters into the terminal window without sending them to the remote machine,
use the TAdTerminal.WriteString method. The string being inserted should be bracketed by
a CR/LF pair (#13#10) to ensure that the new text is on a separate line in the terminal. The
following example opens a TApdComPort component, activates a TAdTerminal component,
and displays “Hello world” in the terminal window:

procedure TForm1.ActivateBtnClick(Sender : TObject);
begin

ApdComPort1.Open := True;
AdTerminal1.ComPort := ApdComPort1;
AdTerminal1.Active := True;
AdTerminal1.WriteString(#13#10+'Hello world'#13#10);

end;

Related examples
TERMDEMO.DPR

EXMDI.DPR
Setting Up a Terminal 199

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Setting Up a Terminal Emulator
This topic shows how to set up a terminal to use a different emulator.

There are two terminal emulators available with Async Professional: the teletype (TTY)
emulator and the VT100 emulator. The first one just echoes all data to the terminal window
and does not attempt to interpret anything in the data stream. Indeed, this is the default
emulation for the terminal, the one that is force is you don’t use a specific emulator
component. The second one is a full VT100 emulation that identifies terminal control
sequences in the incoming data stream and interprets them as commands to alter the
terminal’s display.

Required components
TApdComPort

TAdTerminal

TAdVT100Emulator

Prerequisite topics
“Setting Up a Comport” on page 74.

“Setting Up a Terminal” on page 198.

Related components
TAdTTYEmulator

What to do
Drop a TAdVT100Emulator onto the form and then a TAdTerminal. Dropping the
components in this order means that the terminal component finds the emulator and links
up with it automatically. Alternatively you can set the Emulator property of the TAdTerminal
to point to the TAdVT100Emulator. At run time, the terminal and emulator combination
will pretend to be a VT100 terminal to any host computer that uses it.
00 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
If you wish to provide another emulator for use with the terminal, there are several steps you
must go through. You must provide a set of mappings for the keyboard to tell the emulator
how to map PC keystrokes onto terminal keystrokes; a character set mapping to inform the
emulator how to draw characters from different character sets; and a new parser class that
interprets the incoming data stream, identifying terminal control sequences. Our
recommendation is to study the source code for the TAdVT100Emulator class.

Related examples
EXNEWTRM.DPR

TERMDEMO.DPR
Setting Up a Terminal Emulator 201

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
02 Chapter 5: Tutorials

13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 6: Demonstration Programs

The supplied demonstration programs combine many Async Professional features into each
program. While you might not want to use the larger ones as your first introduction to
Async Professional, they show what is possible and in several cases demonstrate advanced
features that are not used in the example programs.

The terminal demo, TermDemo, is a simple terminal-oriented communications program.

The modem database demo, ModDemo, demonstrates a user interface for adding,
modifying, and deleting records in the Async Professional modem database.

The four fax demonstration programs, SendFax, RcvFax, Cvt2Fax, and ViewFax, are fairly
simple programs that can send and receive faxes, convert text or image files into fax files for
transmission, and view fax files.

RasDemo is a simple Remote Access Service dialer program that can dial and manipulate
RAS phonebooks. It is based on the TApdRasDialer component.

FtpDemo is a simple FTP client program that can connect to an FTP server, login, transfer
files, display directory contents, etc. It is based on the TApdFtpClient component.

The paging demo, ExPaging, demonstrates a user interface for maintaining a list of pager
IDs and access addresses and using them to send alphanumeric pages.

TCom3 is a comprehensive communications demonstration program that provides one of
the endless possible ways to use Async Professional’s components in a real-life business
application.
 203

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Terminal Demo
TermDemo is a simple terminal communications program. It includes only terminal
window features without protocol or modem support, which makes it a clearer example of
terminal window programming techniques than TCom3.

The main window
TermDemo’s main window, shown in Figure 6.1, consists of the terminal window and a
menu bar. The menu bar provides access to all of TermDemo’s functions. From the menu
you can clear the window, change the communication parameters, or use a different
emulation.

The terminal portion of the main window is TermDemo’s primary work area. The terminal
displays characters received at the serial port and transmits characters that you type.
Additionally, the terminal provides VT100 emulation, which translates escape sequences
sent by the remote system into cursor positioning and color changes.

The terminal has two modes: normal mode and scrollback mode. Normal mode is the
default. Pressing the Ins key toggles scrollback mode. In scrollback mode, you can look back
through previously received lines that have scrolled off your screen. To navigate in
scrollback mode, simply use the arrow keys to move up, down, left, and right through the
buffer. Data flow is blocked while in scrollback mode. Pressing Ins again returns to normal
mode.

 Figure 6.1: The main window.
04 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The menu bar
The File menu
Playback file
Use this menu option to play back a file through the emulator. TermDemo reads data from
the file and processes it just as if it was received from the serial port. Each byte is routed
through the attached emulator and, if it is a displayable character, displayed at the current
cursor location in the terminal window. One of the common uses of this feature is to play
back capture files created by TCom3 or other communications programs.

Clear screen
This option clears the terminal window and the screen buffer. The cursor is placed at row 1,
column 1.

Exit
Exits TermDemo.

The Edit menu
Copy
This is the only menu choice for this submenu. Cut and Paste options are not available (as
they are with most windows) because the terminal window does not permit data to be
removed, and the only data that can be added is data received from the serial port or added
using the WriteXxx routines.

Selecting the Copy menu item copies the currently selected text to the Windows clipboard.
Text can be selected by moving the mouse cursor to the start of the area to be marked,
pressing and holding the mouse button while moving the mouse cursor to the end of the
area, and then releasing the button.
Terminal Demo 205

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Communications menu
Set parameters
Selecting this item pops up the Communication Parameters dialog box as shown in Figure
6.2.

You can use this dialog box to change the current communications port, baud rate, parity,
data bits, and stop bits settings. The current settings are indicated by the selected radio
buttons and the combo box. Change the settings by clicking on the radio button of the
desired new setting, or selecting the serial port in the combo box.

When you are satisfied with the selected parameters, click OK or press Enter. TermDemo
closes the current port and reopens the port or device with the new settings. To discard your
changes click Cancel or press Esc.

 Figure 6.2: Communications Parameters dialog box.
06 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Configure TAPI
Selecting this menu item allows you to view or change the properties of the selected TAPI
device, as shown in Figure 6.3.

The Emulation menu
Set parameters
Selecting this menu item pops up the Emulator Options dialog box, shown in Figure 6.4, to
enable you to switch between TTY and VT100 emulation.

 Figure 6.3: TAPI device properties dialog box.

 Figure 6.4: Emulator Options dialog box.
Terminal Demo 207

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Modem Database Demo
A modem database is a collection of information about one or more modems, including all
the strings necessary to initialize, configure, dial, and answer a particular modem. A
database of popular modems is shipped with Async Professional in the file
AWMODEM.INI.

ModDemo is a program that creates or modifies modem databases like AWMODEM.INI.
You can use it to add, delete, or change modems in the supplied modem database, or create
your own modem databases.

The main window
ModDemo’s main window, shown in Figure 6.5, consists of the following list box, which
contains a list of all the modems in the current database, a menu bar, and push buttons for
adding, changing, and deleting modems in the database.

 Figure 6.5: ModDemo’s main window.
08 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The add button
Click on the add button to add a new modem definition to the database. The screen shown
in Figure 6.6 appears.

The dialog box is initially empty when you are adding a new modem. Use this dialog box to
enter general information about the modem you wish to add.

In the Name field, at the top of the dialog box, you can enter an arbitrary name for the
modem. The modem database uses this name to modify and retrieve information about the
modem. After adding the new modem, the name that you enter here will be displayed in the
list box on the main window.

The Commands group of fields, to the left and down from the Name field, is where you enter
information about the commands that are sent to the modem to perform specific
operations. For instance, in the Initialize field, you would enter the command that is sent to
the modem to initialize it.

When entering commands, there are a few special characters and tokens that you can enter
to alter the behavior of Async Professional when it sends these commands to the modem.
The ‘~’ character indicates that Async Professional should stop for a moment (by default,
half a second) before sending the next character in the command. You can also enter control
characters into a command by prefacing the control character letter with the ‘^’ character.
For instance, to insert a carriage return in a command string, you would enter “^M”.

 Figure 6.6: Modem Information dialog box.
Modem Database Demo 209

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Configure command can also contain one special character that the other commands
cannot. If you insert a pipe (‘|’) character into the Configure command, Async Professional
waits until it receives an OK result from the modem before processing the next command.

The Return Codes group of fields, to the immediate right of the Commands group, is where
you enter all the strings that your modem can return when commands are sent to it. You can
get these strings from your modem manual.

At the bottom of the dialog box are six buttons. The three buttons on the left are used to
enter more information about the modem.

Clicking on the Correction or Compress button will pop up another dialog box into which
you can enter error correction or data compression indicator strings. For instance, many
modems return the string “LAPM” during connection handshaking when they detect a
connection that can handle data compression. If that is the case with the modem you are
adding to the database, click on Compress and enter the string “LAPM” in the first field in
the dialog that pops up.

The tag entry dialog box has room to hold five different data compression or error
correction tags. This is because many modems return different strings depending on what
type of data compression or error correction is available for a given connection. For
instance, the Practical Peripherals 14400 baud fax modem returns, at various times, the
strings “MNP5”, “LAPM”, or “V.42BIS”, depending on the type of error correction
available. If you are adding such a modem to the database, you would enter each string on its
own line in the tag entry dialog box.

Also at the bottom of the Modem Information dialog box is a button labeled Baud. Clicking
on this button pops up the dialog box shown in Figure 6.7.

The first field on this dialog box is labeled Default BPS Rate. In this field, enter the default
baud rate for the modem. Terminal programs can use this information when determining a
set of default communications parameters for this modem. The next field is a check box
labeled Lock DTE Rate. Many modems perform best when they communicate at a fixed rate

 Figure 6.7: Link Rate Information dialog box.
10 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
(usually 19200 baud or greater) between the PC and the modem, regardless of the data rate
negotiated with the remote modem. If yours is such a modem, check this box; otherwise
leave it unchecked.

When you are finished entering data about the new modem, click OK at the bottom of the
modem entry dialog box to save the modem to the database. If you do not want to save the
modem definition, click Cancel.

The Change button
The Change button at the bottom of the main window allows you to change a modem’s
information. To change a modem, highlight the modem whose record you want to modify
in the list box, click Change. Alternately, you can simply double-click on the item’s name in
the list box.

Clicking the Change button, or double clicking on a modem’s name, pops up the same
modem data entry dialog box that is used to add a new modem to the database. Make the
modifications that you want, then click OK to save the modified modem definition, or click
Cancel to abandon the changes.

The Delete button
You can delete a modem definition from the database by clicking on the Delete button.
Highlight the name of the modem you want to delete in the list box, then click Delete. A
message box will appear, asking if you are certain that you want to delete the modem. Click
Yes and the modem will be deleted, or click No to cancel the deletion.

The File menu
The File menu, attached to the main window, provides various services for opening
databases, creating new databases, and saving changes to a database.

New
If you want to create a new modem database, select the File | New option. This will clear any
previously loaded modem database from memory. If you have made changes to the current
database and have not yet saved them, you will be prompted to do so.

Open
You can load an existing modem database, such as Async Professional’s AWMODEM.INI,
into the program by selecting File | Open. A dialog box will pop up asking you which file you
want to load. Select the filename from that dialog box and click OK. The names of all the
modems contained in that database will be loaded into the list box on the main window.
Modem Database Demo 211

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Save
Once you have made additions, changes, or deletions to a modem database, you must save
them to a file. Selecting File | Save from the menu will write all of your changes to disk. If the
current database was not loaded from an existing file, you will be prompted to enter a file
name before the database is written to disk.

Save As
Selecting File | Save as from the menu allows you to save the current modem database under
a new name. After selecting the menu item, a dialog box appears asking you for the new
filename. Enter the name you want and click OK.

Exit
Selecting File | Exit closes the ModDemo program. If you have made changes to the loaded
database and have not yet saved them, you will be prompted to do so before the program
closes.

The Edit menu
The Edit menu duplicates the functions of the push buttons at the bottom of the main
window. Select Edit | Add to add a record, Edit | Change to modify the highlighted record, or
Edit | Delete to delete the highlighted record.
12 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Send Fax Demo
SendFax is a simple fax program that can send multiple faxes, with optional cover pages to
multiple fax numbers. It supports only sending faxes, not receiving them, which makes it a
clear example of the issues involved in transmitting faxes.

The main window
SendFax does not use menus or toolbars. All of the options are set from the main form,
shown in Figure 6.8, and faxing operations are controlled by the row of buttons at the
bottom of the form.

The top half of the main form contains the configurable fax options. Use the Fax class radio
button group to select the fax class supported by your modem. If you aren’t sure of the class
of your modem, select “auto detect” and the TApdSendFax component automatically
detects the class.

 Figure 6.8: SendFax main window.
Send Fax Demo 213

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Dial attempts and Retry wait edit controls control how many times each call is tried if
busy signals are encountered, and how long to wait, in seconds, between attempts.

The Station ID edit control contains the station ID, the identification string that is sent to the
remote fax device.

The Dial prefix edit control, which defaults to an empty string, is for a standard dialing
prefix, if one is required to dial an outside line (e.g., dial 9 for an outside line).

The Modem initialization string, which defaults to an empty string, can be used to send
modem initialization commands. For example, you could set the modem initialization
string to M1 (the modem command to turn on the speaker).

Fax header allows you to specify the header at the top of each transmitted page. The default
fax header contains several replacement tags. The $I tag is replaced by the station ID, $D is
replaced by today’s date, and $T is replaced by the current time. So, the header that appears
at the top of the received fax would look something like this:

Fax sent by APro SENDFAX using APro 3.0 04/15/97 12:15pm

See HeaderLine in the Reference Guide for more information.

The Use Enhanced Fonts check box control allows you to use TrueType fonts for the fax
Header and Cover Page. If it is checked, the fonts specified in from the Header Font and
Cover Font buttons will be used to render the Header and Cover Page of the fax.

The Head Font and Cover Font buttons will display the standard Font Selection Dialog,
which allows you to select the font to use if the Use Enhanced Fonts check box control is
checked.

Faxes to send contains a list of the fax files queued for sending. As each fax file is successfully
transmitted, it is removed from the list box. If SendFax encounters a fatal error while
sending a fax, the file name is not removed from the list box. If the error is a correctable one
(e.g., the wrong phone number was specified), the fax entry can be corrected and Send faxes
clicked again. SendFax will continue sending queued faxes, starting with the last failed fax.
14 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The Add, Modify, and Delete buttons are used to modify the list of faxes displayed in the
Faxes to send list box. Selecting Add or Modify displays a dialog box, shown in Figure 6.9,
that allows you to specify or change the phone number, fax file name, and an optional cover
sheet.

After you finish adding or modifying, click on Add to return to the main window. To remove
a fax from the list, highlight it and click Delete.

The Send faxes button starts the fax transmission process, starting with the first fax in the
list and continuing through all faxes, stopping at the end of the list or when an error is
encountered.

The Exit button ends the program. Any faxes still queued for transmission are not sent, nor
are they saved for the next run of SendFax.

The SendFax demonstration program contains standard TApdFaxStatus and TApdFaxLog
components for displaying faxing progress and creating a history file of all faxes
transmitted. See “TApdFaxStatus Component” in the Reference Guide for a picture of the
fax status display.

 Figure 6.9: Add/modify/delete faxes dialog box.
Send Fax Demo 215

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Receive Fax Demo
RcvFax is a simple fax program that waits for and answers incoming fax calls until it
encounters a fatal error or is cancelled. It supports only receiving faxes, not transmitting
them, which makes it a clear example of the issues involved in receiving faxes.

The main window
RcvFax does not use menus or toolbars. All of the options are set from the main form,
shown in Figure 6.10, and faxing operations are controlled by the row of buttons at the
bottom of the form.

The top half of the main form contains the configurable fax options. Use the Fax class radio
button group to select the fax class supported by your modem. If you aren’t sure of the class
of your modem, select “auto detect” and the TApdReceiveFax component automatically
detects the class.

The Name style radio buttons determine how incoming fax files are named. The default
choice is “count”, where incoming faxes are named:

faxnnnn.apf, where nnnn is a sequential number (starting at 0001)
that is the first free number for the current directory

 Figure 6.10: RcvFax main window.
16 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The other available choice is month/day, where incoming faxes are named:

mmddnnn.apf, where mm is the month, dd is the day, and nnnn is a
sequential number (starting at 0001) for the number of files
received this day

The Receive directory edit control contains the directory name where incoming fax files are
stored. If it is blank (the default), incoming fax files are stored in the current directory.

The Modem initialization string, which defaults to an empty string, can be used to send
modem initialization commands. For example, you could set the modem initialization
string to M1 (the modem command to turn on the speaker).

The Received faxes list box contains a list of all the fax files successfully received since
RcvFax was started, along with the size of the fax file and the date and time it was received.

The Receive faxes button tells RcvFax to begin listening for faxes. RcvFax then displays its
status form to show the progress of incoming faxes.

The Exit button ends the program.

The RcvFax demonstration program contains standard TApdFaxStatus and TApdFaxLog
components for displaying faxing progress and creating a history file of all faxes received.
See “TApdFaxStatus Component” in the Reference Guide for a picture of the fax status
display.
Receive Fax Demo 217

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Fax Converter Demo
Cvt2Fax is a program that converts text, BMP, PCX, DCX, and TIFF files into APF (Async
Professional Fax) files. An image or text document must be converted to an APF file before it
can be transmitted.

The source files and forms are specially designed to allow you to simply add the forms and
units to your own programs.

The main window
Cvt2Fax’s main window is used for selecting files to convert.

Files that are queued for conversion are shown in the lower list box. You can put a file
directly in the conversion queue by typing its name in the edit control and pressing Enter. If
the name you enter contains wildcard characters (‘*’ or ‘?’), the top two list boxes (the ones
containing file and directory listings) are reloaded with information from the path you
specify and the edit control is cleared. The file extension must be TXT, BMP, PCX, TIF, or
DCX depending on the file format.

 Figure 6.11: Cvt2Fax main window.
18 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Alternately, the Folders list box displays all of the files in the current directory that match the
mask you enter or that match the filter in the List files of type combo box. You can queue
files from this multiple selection list box by selecting them and clicking the Add button, or
by double-clicking on the file.

To remove files from the Files to convert list box, select the files and click the Remove button.

The Drives and Folders list boxes can be used to access all the drives and directories on your
system.

Conversion options
Cvt2Fax allows you to specify several options for converting faxes. Click Options on the
main window. The dialog box shown in Figure 6.12 appears.

The Resolution radio buttons allow you to choose the resolution of converted faxes. The
default resolution is Standard (200x100 dpi).

The Fax width radio buttons allow you to choose the width of converted faxes. The default
width—the only width most fax devices support—is 1728 pixels.

The Scaling radio buttons allow you to choose how graphics images are scaled when
converted to standard resolution faxes. Because most image files contain images with a 1:1
aspect ratio, and because standard resolution faxes have a 2:1 aspect ratio, the Cvt2Fax
program allows you to choose options that compensate for this. The default scaling setting is
Double width. This doubles the width of converted images so that the resulting fax appears

 Figure 6.12: Fax Conversion Options dialog box.
Fax Converter Demo 219

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
normal. The second option, Half height, halves the height of images to achieve the same
effect. However, the image looks smaller than images converted with the double width
option.

The Positioning radio buttons determine the position of image files on the fax page. Graphic
images can either be centered in the page or at the left edge of the page.

The Font size radio buttons allow you to choose a font size for ASCII text files. Standard font
(the default) allows text line lengths of up to 85 characters on a 1728 pixel wide fax. Small
font allows about 144 characters per line.

The Enable Enhanced Text check box gives you the option to use TrueType fonts in the
conversion of ASCII text files. If this is checked, the Enhanced Font button is enabled,
allowing the selection of the font to use.

An ASCII text file can be converted into one long page, or it can be broken up into multiple
pages. The number of lines per page is set in the Lines per page edit control. The default
setting is 60 lines per page (about 10 inches of text using the standard font). To leave the
entire fax as one page, set lines per page to 0.

When you are finished setting options, click the OK button and the new options take effect.
To discard any changes you made to the options, click the Cancel button.

Converting
After you select all the files you want to convert and set the desired options, click OK in the
main window to begin the conversion. During the conversion, the status dialog box shown
in Figure 6.13 is displayed.

 Figure 6.13: Conversion Progress status dialog box.
20 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The Converting list box displays the names of the files to be converted and highlights the
name of the file that is currently being converted. The meter control shows the progress of
the conversion of the current file. The Cancel button stops the conversion process.

After all of the files are converted, you are returned to the fax converter main window where
you can select more files to convert or exit.
Fax Converter Demo 221

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Fax Viewer Demo
ViewFax implements a fax viewer component that allows you to view APF files. The source
files and forms are specially designed to allow you to simply add the forms and units to your
own programs. In fact, the fax viewer in the TCom demo program is based on the source
code for ViewFax.

The main window
ViewFax’s main window, shown in Figure 6.14, consists of a viewer area and a menu bar.

The viewer area, which constitutes the bulk of the screen, is where faxes are displayed. If the
fax is too large to fit in the viewer area, the window can be resized to accommodate the size
of the fax, or the scroll bars, which are displayed automatically, can be used to scroll through
the fax. Navigational keystrokes are also accepted, see the section on the TApdFaxViewer
component for the specific navigational keys.

 Figure 6.14: ViewFax main window.
22 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The menu bar
The File menu
Open
This option allows you to load fax files (APF files) into the viewer. The Windows standard
file open dialog box, as shown in Figure 6.15, is displayed.

Select the file to view and it is loaded into the viewer. When a file is loaded, scaling or
rotation settings are reset to their defaults. To scale or rotate a newly loaded fax, set the
appropriate options in the View menu.

 Figure 6.15: Open File for Viewing dialog box.
Fax Viewer Demo 223

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Print setup
ViewFax can print faxes in addition to viewing them. Choose Print Setup to display the
standard Windows printer setup dialog box, shown in Figure 6.16, and choose the printer
and print options.

Print
This option prints the viewed fax to the printer chosen using the Print Setup option. If no
printer was chosen, the fax is printed to the default printer.

Faxes are printed using the psFitToPage option of the TApdFaxPrinter component. This
means that each page in the fax, no matter how large, is scaled to fit exactly on one page of
paper.

If no fax is loaded, the Print option does nothing.

Exit
Exits ViewFax.

The Edit menu
Select All
This option selects the fax page that is currently being viewed. The selection is displayed in
inverted colors. Once the page is selected, the Copy option can be used to copy the selected
image to the Windows clipboard.

Copy
This option copies the selection to the clipboard. You can select an entire fax page by using
the Select All option. Smaller portions of the fax can be selected by clicking the mouse in the
upper left hand corner of the image you wish to select and dragging the mouse to form a
rectangle. The selected rectangle of image is shown on the screen in inverted colors.

 Figure 6.16: Print dialog box.
24 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The View Menu
Zoom In
This option causes the displayed fax to be increased in size by 25%. The default display
scaling is 100%, or “normal” size. If you select the Zoom In option when the scaling settings
are at the default, the fax is displayed at 125% of its normal size.

The maximum size at which an image can be displayed is 400%. Choosing Zoom In when
the display is already scaled to 400% has no effect.

Zoom Out
This option causes the displayed fax to be decreased in size by 25%. The default display
scaling is 100%, or “normal” size. If you select the Zoom Out option when the scaling
settings are at the default, the fax is displayed at 75% of its normal size.

The minimum size at which an image can be displayed is 25%. Choosing Zoom Out when
the display is already scaled to 25% has no effect.

25%, 50%, 75%, 100%, 200%, and 400%
Selecting a percentage causes the fax to be viewed at that percentage of its original size.
When one of these options is chosen, a check mark appears next to the item indicating the
current scaling settings.

Other
If the pre-defined scaling settings are not sufficient for your viewing, choose the Other
option to manually enter the size at which you want the fax displayed. The dialog box shown
in Figure 6.17 is displayed.

You can enter any number between 25 and 400, but even numbers and multiples of 5 usually
produce the best results.

No Rotation, Rotate 90 degrees, Rotate 180 degrees, and Rotate 270 degrees
Because paper can be fed into a fax machine four different directions, it is sometimes useful
to be able to rotate a displayed fax. For example, choosing 180 degree rotation properly
displays a fax that was received upside-down. When the fax is rotated, a check mark appears
next to the option that indicates the current rotation setting.

 Figure 6.17: Custom Scaling dialog box.
Fax Viewer Demo 225

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Whitespace Compression
ViewFax has the ability to compress large amounts of vertical white space in displayed faxes
into smaller amounts of white space. Often, this results in being able to fit more of a
displayed fax on the screen.

When the Whitespace Compression option is selected, the dialog box (shown in Figure
6.18) is displayed.

The check box at the top of the dialog determines whether white space compression is
enabled. The two edit controls determine how the white space is to be compressed. In the
example above, every instance of 20 or more blank lines will be compressed to 5 blank lines.

White space compression does not take effect immediately. The settings take effect when
you next load a fax using the Open option.

Page Flags bar
The Page Flags status bar displays the options currently in effect for the fax in the display.
These flags represent properties of the fax being viewed. The High Res check box is checked
if the fax is 200X200 and unchecked if the fax is 200X100. The High Width check box is
checked if the fax width is 2048 pixels and unchecked if the fax width is 1728 pixels. The
Length Words check box is checked if the raster lines of the fax include a length cardinal.

 Figure 6.18: Whitespace Compression dialog box.
26 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Fax Monitor and Fax Server Demo
FaxMon and FaxServr are two projects that work together to monitor fax printer print jobs
and to send them once they are complete. FaxMon monitors the Async Professional fax
printer driver for print jobs and notifies FaxServr. FaxServr retrieves the phone number to
send the fax to, then sends the fax. These two projects do not use the TApdFaxServer,
TApdFaxServerManager, or TApdFaxClient components.

FaxMon
The FaxMon project detects and monitors the print jobs sent to the Async Professional fax
printer driver. The main form of FaxMon, shown in Figure 6.19, displays the print jobs as
they are created, queued, and sent by the server application. FaxMon can be compiled as a
TrayIcon for systems that support TrayIcons.

The Server application edit control designates the application that processes the fax once the
fax printer driver has completed the print job. The Select button displays an open dialog
where the server application can be selected.

The Jobs list box control displays the print jobs that have been sent to the fax printer driver.
The name of the print job is shown along with the current status of the job. If the state is
“Printing”, the document has been sent to the fax printer driver, but has not been
completed. If the state is “Generated”, the fax printer driver has completed the conversion. If
the state is “Queued”, the server application has been activated and the fax is waiting
processing. If the state is “Sent”, the server application has sent the fax.

 Figure 6.19: FaxMon dialog box.
Fax Monitor and Fax Server Demo 227

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
FaxServr
The FaxServr project receives the custom messages from FaxMon that are sent when a print
job is complete. The FaxServr dialog box is shown in Figure 6.20. FaxServr gets the
destination phone number, then sends the fax.

The State label displays the current state of the fax transfer. Enter the phone number of the
receiving fax machine in the Enter phone # edit control. The Send button begins sending the
fax to the designated number.

 Figure 6.20: Fax server dialog box.
28 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Fax Server Demo
FaxSrvX is a demonstration program which will monitor print jobs sent to the Async
Professional fax printer driver and send the faxes. FaxSrvX is based on SendFax, see page
213 for additional descriptions, and does not use the TApdFaxServer,
TApdFaxServerManager, or TApdFaxClient components.

When a print job is sent to the fax printer driver, the Add/modify/delete faxes dialog is
shown. Enter the phone number of the receiving fax machine in the Phone number edit
control. The Fax file name edit control will contain the name of the fax file that was
generated by the fax printer driver. Enter the optional cover page in the Cover file name edit
control. The Add button will add this fax to the list of pending faxes. The Cancel button will
not add this fax to the list of pending faxes.
Fax Server Demo 229

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
RAS Dialer Demo
RASDEMO is a simple RAS dialer program that can dial and manipulate RAS phonebooks.
It is based on the TApdRasDialer component.

To use RASDEMO, you must have RAS is installed on your machine. RAS is installed by
default on most Win95/98 machines. On NT machines, however, RAS is not installed until
you add a modem device to the system configuration.

The main window
The main window, shown in Figure 6.21, consists of a menu bar, edit controls and a status
line.

The menu bar provides access to all of RasDemo’s functions. From the menu you can dial,
hangup and manipulate entries in a RAS phonebook. The edit controls allow you to specify
the phonebook (Windows NT), the phonebook entry, and dialing parameters. The status
line reflects the connection status during dialing.

 Figure 6.21: RasDemo main window.
30 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The menu bar
The File menu
Exit
Exits RasDemo.

The Call menu
Dial (95/98/ME)
Initiates dialing for the specified phonebook entry and displays a connection status dialog
during dialing and user ID authorization. This is the only dialing option available for
Windows 95/98/ME users.

Phonebook dialog (NT/2000)
For Windows NT/2000 users, another dialing option is available via NT’s main dial-up
networking dialog box, shown in Figure 6.22. From this dialog box, you can choose a
phonebook entry to dial, can edit, copy, or delete entries, and initiate dialing.

Hangup
Terminates a RAS connection.

 Figure 6.22: Dial-Up Networking dialog box.
RAS Dialer Demo 231

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Phonebook menu
New entry
Invokes a multi-page dialog box, shown in Figure 6.23, that takes you through the process of
creating a new phonebook entry.

 Figure 6.23: New Phonebook Entry dialog box.
32 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Edit entry
Invokes a multi-page dialog box, shown in Figure 6.24, that allows you to edit an existing
phonebook entry. With this dialog you can change any configuration options.

Delete entry
Deletes the current entry from the current phonebook. If a connection has been established
for the entry, it will be terminated. Note: this option is not available on early versions of
Windows 95.

Refresh list
Refreshes the list of entries for the current phonebook in the Phonebook Entry combo box.
This is useful to make sure the list is up to date after creating or deleting an entry.

 Figure 6.24: Edit Phonebook Entry dialog box.
RAS Dialer Demo 233

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
FTP Client Demo
FTPDEMO is a simple FTP client program that can connect to an FTP server, login, transfer
files, display directory contents, etc. It is based on the TApdFtpClient component.

To use FTPDEMO, you need an existing Winsock/network connection. If you do not have
an Inter/Intranet connection, the easiest way to make such a connection is usually through
Dial-Up Networking or Remote Access Service.

The main window
The main window, shown in Figure 6.25, consists of a menu bar, three tabbed notebook
pages, and an information display window.

The menu bar provides access to all of FtpDemo’s functions. From the menu you can login
in to an FTP server, transfer files, restart an interrupted file transfer, rename and delete
remote files, list the contents of a remote directory, create and delete remote directories,
obtain server status information, issue an FTP command string, and produce a log of FTP
operations.

 Figure 6.25: FtpDemo main window.
34 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The tabbed notebook pages provides access to various user login ID information, file
transfer options, and a window that displays the replies received from the server.

The information display window shows various remote directory and status information
that is requested from the server.

The menu bar
The File menu
Login
Opens a control connection to an FTP server and logs in with the user login ID information
specified on the Login Information page.

Logout/Quit
Logs the user out and closes the control connection to an FTP server.

Send
Uploads a local file from the local machine to an FTP server. A dialog prompts for the
remote and local file names and initiates the transfer. If the remote file already exists, the file
is replaced, appended, or given a unique name according to the settings on the Transfer
Options page.

Receive
Downloads a remote file from an FTP server to the local machine. A dialog prompts for the
remote and local file names and initiates the transfer. If the local file already exists, the file is
replaced or appended to according to the settings on the Transfer Options page.

Rename
Renames a remote file. A dialog prompts for the remote file name and the new file name.

Delete
Deletes a remote file. A dialog prompts for the remote file name.

Exit
Exits FtpDemo.

The Directory menu
List
Obtains a List of the contents of a remote directory and displays it in the Requested
Information window. If a Full listing is selected, various file information such as timestamp,
size, and attributes are included. If a Names listing is selected, only the file names are
displayed. A dialog prompts for the remote directory name. If no directory name is entered,
the contents of the current working directory will be displayed.
FTP Client Demo 235

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Change
Changes the current working directory at the server. A dialog prompts for the remote
directory name.

Create
Creates a new remote directory. A dialog prompts for the remote directory name.

Rename
Renames a remote directory. A dialog prompts for the remote directory name and the new
directory name.

Delete
Deletes a remote directory. A dialog prompts for the remote directory name.

The Misc menu
Help
Obtains help information from the server and displays it in the Requested Information
window. A dialog prompts for the FTP command. If a command is entered then the help
information consists of the syntax for the command. Otherwise the help information
consists of a list of the FTP commands that are supported by the server.

Server status
Obtains status information about a remote file, a remote directory, or the server itself and
displays it in the Requested Information window. A dialog prompts for the remote path
name. If the remote path name specifies a file, then the size of the file is displayed. If the
remote path name specifies a directory, then a full listing is displayed. If no remote path is
specified, then general server status information is displayed.

Send Ftp command
This option allows the user to issue an FTP command (as specified by RFC 959) directly to
the server. A dialog prompts for the FTP command string. Note: commands requiring a
separate data connection cannot be initiated by this method.

Log dialog
This options enables and disables FTP operation logging. When logging is enabled, a log
entry is made to APROFTP.HIS each time an FTP operation is initiated. APROFTP.HIS is a
text file located in the directory where the application is run.

Clear displays
This clears the Requested Information and Server Reply display windows.

Login information
Use this page to specify the domain name of the FTP server, user login ID, and to log in to
the server and log off.
36 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Be sure to set these fields appropriately before attempting to login to an FTP server.

Transfer options
This page, shown in Figure 6.26, allows you to specify various file transfer options.

Send mode and receive mode determines how an existing destination file will be handled. If
the destination file already exists:

• Select Append to transfer the file data to the end of the existing file.

• Select Replace to overwrite the existing.

• Select Unique to transfer the file data to a unique file name created by the server.

If the FTP server supports resumable transfer, Restart indicates that the Send or Receive file
transfer will be restarted at the byte location specified by Restart at.

You can also adjust the maximum time you want to wait for the server to replay to a
command. The default value is 540 ticks which is roughly 30 seconds.

 Figure 6.26: Transfer options page.
FTP Client Demo 237

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Server replies
This page, shown in Figure 6.27, consists of a window that displays replies received from the
server. This window is cleared from the Clear Memo menu item.

 Figure 6.27: Sever Replies page.
38 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Paging Demo
ExPaging is a simple paging program that allows the user to maintain a list of pager IDs and
access addresses (TAP Paging Server phone numbers and/or SNPP IP addresses), and to
send alphanumeric pages to them individually or in groups.

The main window
ExPaging does not use menus or toolbars. All of the primary options are available from the
main form, shown in Figure 6.28, and paging operations are controlled by the buttons
beneath the status display.

The right half of the main form contains the paging status display which shows messages
indicating the progress of a page and can aid in diagnosing difficulties with sending to a
particular address or pager ID. Use the buttons beneath the status display send a page (or
group of pages) and to cancel the current page (or group).

On the left side of the main form, from the top, are an edit area to enter the message to be
sent, the list of pagers currently being maintained by ExPaging (along with buttons for
managing the list, see “Managing the pager list” on page 240). Multiple pagers may be
selected in the list of pagers to have the same page sent to each of them sequentially.

Beneath the list are two edit boxes that automatically update for the currently selected pager
in the list. A Pager ID and Access Address may be entered manually in the respective edit
boxes for one-shot pages; these are not remembered by the program however.

 Figure 6.28: ExPaging main window.
Paging Demo 239

1

1

2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Next to the Edit boxes are a check box and two buttons for controlling the logging features of
ExPaging (see “Page logging” on page 241).

Finally, at the bottom of the screen is a status line with a display showing the current paging
state and button to exit the program (exiting the program via this button, or the close button
on the title bar cancels the current paging operation just as if you had clicked the Disconnect
button before the program exits.

Managing the pager list
ExPaging manages a collection of pager IDs and access addresses. These are maintained in a
plain text file, PAGERS.LST, which should reside in the directory/folder where ExPaging
itself resides.

Next to the list of pagers on the main form are three buttons: Add, Edit, and Remove.
ExPaging can perform all relevant maintenance on the pager list using these buttons, so it
should be generally unnecessary to edit the page list file directly.

Add and Edit both bring up a secondary form, the Add/Edit User form (shown in Figure
6.29). On this form are three edit boxes and a Radiogroup.

The first edit box is for an identifier for the pager; generally this will be the user’s name but
can be in pretty much anything as long as it is unique among all pager entries.

So, if you ever need to enter more than one pager for an individual (e.g., someone who has
both a TAP and an SNPP pager), these must be made distinct: “John Doe (TAP)” vs. “John
Doe (SNPP)”.

 Figure 6.29: Update User dialog box.
40 Chapter 6: Demonstration Programs

13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Next comes the Protocol RadioGroup which allows selection of the paging protocol; either
via phone line/modem (TAP) or over an Internet or TCP/IP connection (SNPP). For the
entry illustrated above, the default is TAP.

Third is the edit box for the Pager ID and last is a box to enter the paging server “address”
(TAP phone number or SNPP IP address and port). The format for an SNPP address is
IP Address:Port.

OK closes the form and causes the main form to add or update the entry. Cancel closes the
form and no changes are made.

Page logging
ExPaging includes the facility to keep track of sent pages by making notations in a paging
log. This facility is managed by the controls in the Logging group box. First is a check box
to determine if logging occurs at all; second is a button to view the log current log, third is a
button to clear the current log and start fresh.

Clicking the View button brings up the View Pager Log form, shown in Figure 6.30.

The main TMemo area shows the contents of the currently selected Paging Log. You can
view other Logs (or any text file actually) by clicking Browse and picking another file with
the resulting OpenFile dialog box.

The Set button makes the currently selected file the default Log file for ExPaging; any new
page logging entries will be appended to that file. If you have entered a name for a file that
doesn’t exist, ExPaging will create the file and use it as the log file.

OK closes the Log file viewer and causes ExPaging to update which Log file is used, if that
was changed.

 Figure 6.30: Page Log Viewer form.
Paging Demo 241

1

1

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
G

lo
ssary
Glossary

This glossary contains a combination of industry accepted definitions and, where noted,
definitions that are unique to Async Professional.

Alphanumeric paging

An extension of the numerical paging capability. Alphanumeric paging allows
transmission of general textual information to paging devices/receivers.

ANSI

American National Standards Institute. In Async Professional, references to ANSI usually
refer to the ANSI standard for terminal control as exemplified by the DOS ANSI.SYS
device driver.

asynchronous serial communication

Serially transmitted data in which each character is surrounded by start and stop bits.
That is, each character can be extracted from the data stream without making
assumptions, based on time, about when characters start and stop.

AT commands

An industry-standard set of commands for controlling modems introduced with the
Hayes SmartModem.

baud rate

A measure of modulation rate, not communication speed. Technically, baud rate means
the number of signal changes per second. At the UART, baud rate is generally equal to bps
(bits per second), since each signal change represents one bit. When using modems,
however, baud rate is generally different than bps, since the modulation schemes used by
modems typically encode more than one bit per signal change. That’s why modem speeds
are typically rated in terms of bps.

Bell 103

The AT&T modem standard for asynchronous communication at speeds up to 300 bps.

Bell 212A

The AT&T modem standard for asynchronous communication at speeds up to 1200 bps
on dial-up telephone lines.
 242 1

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
G

lo
ssary
bps

Bits per second, a measure of raw communications speed, which quantifies how fast the
bits within a character are being transmitted or received. It is not a measure of overall
throughput, but rather a measure of the speed with which a single character can be
processed.

break

A signal that can be transmitted or received over serial communication links. A break is
not a character, but rather a condition in which the serial line is held in the “0” state for a
least one character-time.

client

An application that connects to a server for the purpose of exchanging of data.

CCITT

Comité Consultatif International de Télégraphique et Téléphonique (International
Telegraph and Telephone Consultative Committee). A European communications
standards committee, which has recently been renamed to ITU-TSS.

character (in terminal emulation)

A binary value, usually byte-sized, the visual representation of which is controlled by font
selection and character mapping tables.

character set mapping table

A list of character ranges in character sets and the fonts and glyphs that should be used to
display them.

character-time

This term is used to mean the amount of time between the start bit and stop bit of a serial
byte (inclusive). This is the smallest period of time between successive received or
transmitted characters (of course, the elapsed time between characters can be longer than
one character-time).

checksum

A byte, or bytes, appended to the end of a block of data that is used to check the integrity
of that block. A checksum is the sum of all the bytes in the block.

comport

In this manual, refers to a TApdComport component, or a component derived from
TApdCustomComport (such as TApdWinsockPort). This convention is used to reduce
confusion between the physical port and the comport component. Outside of Async
Professional's documentation, it is not uncommon to see “comport”; “com port” and
“serial port” being used synonymously.
1Glossary 243

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
G

lo
ss

ar
y

2

COMM.DRV

The Windows device driver that performs all of the low-level work required to send and
receive using the PC’s UART chip in 16-bit Windows.

CRC

A byte, or bytes, appended to the end of a block of data that is used to check the integrity
of the data. CRC is short for cyclical redundancy check, a data checking algorithm that
provides a much higher level of protection than a simple checksum.

CTS

Clear to send. This is a modem control signal that is raised by the modem when it is ready
to accept characters. The modem may lower this line when it cannot accept any more
characters (this usually means that its receive buffer is nearly full). This behavior is called
hardware handshaking or hardware flow control.

data bits

The bits in a serial stream of data that hold data as opposed to control information. The
number of data bits is one of the line parameters needed to describe a serial port
configuration. The acceptable values are 5 through 8.

data compression

Refers to the ability of some modems to compress data before passing it to the remote
modem. There are two standards that describe data compression methods, MNP and
V.42bis.

DCB

Device control block. A structure passed from a Windows program to the
communications driver. It contains the line parameters and other configuration
information that the communication driver uses to configure the UART.

DCD

Data carrier detect. A signal provided by a modem to indicate that it is currently
connected to a remote modem.

DCE

Data communications equipment. Generally, this refers to a modem.

device layer

This layer of Async Professional provides the physical connection between the software
and the hardware.

DNS

A remote database that contains a list of host names and their corresponding IP
addresses.
44 Glossary

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
G

lo
ssary
dot notation

A way of specifying an IP address (e.g., 165.212.210.12).

DSR

Data set ready. This is a modem control input signal to a UART that tells the UART that
the remote device (usually a modem) is active and ready to transmit data.

DTE

Data terminal equipment. Generally, this refers to a terminal or a PC emulating a
terminal.

DTR

Data terminal ready. This is a modem control signal raised by a UART to notify the
remote (usually a modem) that it is active and ready to transmit.

emulation

Refers to a PC program that mimics the “appearance” and functionality of a terminal in
such a fashion that the server computer is not aware that there is no real terminal present.

error correction

Refers to the ability of some modems to check the integrity of data received from a remote
modem. There are two standards that describe error correction protocols, MNP and
V.42.

escape sequences

Terminal control sequences in the stream of data coming into the terminal.

FIFO mode

A mode of operation for 16550 UARTs that takes advantage of the UART’s
first-in-first-out buffers.

flow control

A facility that allows either side of a serial communication link to request a temporary
pause in data transfer. Typically, such pauses are required when data is being transferred
faster than the receiver can process it. Hardware flow control is implemented via changes
in the CTS and RTS signals. Software flow control is implemented via the exchange of
XOn and XOff characters.

full duplex

1. A mode of communication in which the receiving computer automatically echoes all
data it receives back to the transmitter. 2. A communications link that can pass data both
directions (receive and transmit) at the same time.
1Glossary 245

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
G

lo
ss

ar
y

2

glyph

The visual representation of a character.

half duplex

1. A mode of communication in which the receiving computer does not echo any data
back to the transmitter. 2. A communications link that can pass data in only one direction
at a time.

handshaking

Refers to the initial transfers of data between two processes. Usually this term is used to
describe the start of a protocol file transfer or the exchange of data that occurs when two
modems first connect.

host name

The text description of an IP address (e.g., joeb.turbopower.com).

interface layer

The layer of Async Professional that contains the majority of the application
programming interface (API). This layer is implemented by the TApdComPort
component.

IP address

The 32-bit address of a network computer. All IP addresses are unique.

IRQ

One of the lines on the PC or PS/2 bus that is used to request a hardware interrupt. Any
device that needs to interrupt the CPU (such as a UART) does so via an IRQ line.

ITU-TSS

International Telecommunications Union-Telecommunications Standardization Sector.
A European communications standards committee, formerly known as CCITT.

LAP M

An error-correction protocol included with the most recent CCITT communications
standard V.42.

line error

Refers to one of the following errors: UART overrun, parity error, or framing error. Such
errors are due either to interference picked up by the physical connection (cable, phone
line, etc.) or to a mismatch in line parameters between the two ends of a serial link.

lookup

An action that Winsock performs to retrieve the IP address for a host name, or to retrieve
the port number for a service name (and vice versa).
46 Glossary

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
G

lo
ssary
MNP

Microcom Networking Protocol. A communications protocol designed by Microcom,
Inc. and placed in the public domain. MNP defines several service levels that provide
error control and data compression facilities between two modems. MNP is of interest
only if you are using modems that support it. See the modem manual for more
information about the details of MNP.

modem

A device that facilitates serial communication over phone lines. The term is derived from
the phrase MOdulation/DEModulation device.

network shared-modem pool

A collection of modems in a network that are available to any PC in the network. In a
typical situation, several modems are attached to one PC (a “modem server”) and other
PCs on the network use a network protocol to access these modems.

paging

Originally, simply a means of notifying someone to call back to an answering service; and
later a means of transmitting numeric data to devices with limited display capabilities; the
definition of paging has been broadened to include the transmission of general textual
information to portable electronic devices.

paging device

Also “paging receiver” or "pager". The usually small electronic device capable of
receiving paging transmissions, originally restricted to dedicated “pagers”, many
modern cell phones and other personal electronic devices can also serve as paging
receivers. Each has an identifier (often called a PAN: “Personal Access Number”) which
allows the device to be uniquely identified and contacted.

paging receiver

See “paging device”

paging server

A device and/or software that manages requests for pages and transmits them to the
appropriate paging devices/receivers.

parity

A bit that is used to check the integrity of a byte. The parity bit is set by the transmitter
and checked by the receiver. If present, the parity bit is set so that the sum of the bits in the
character is always odd or always even. The parity bit can also be set to a constant value
(always on or always off).
1Glossary 247

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
G

lo
ss

ar
y

2

port (Winsock)

A number from 0 to 32767 that, along with the IP address, is used to create a socket.

protocol

Generally, an agreed upon set of rules that both sides of a communications link follow.
This term crops up in two places in Async Professional: file transfer protocols and
modem protocols. A file transfer protocol is a set of rules that two computers use to
transfer one or more files. A modem protocol describes the modulation technique as well
as the error control and data compression rules.

remote device

In Async Professional, this term is used to describe what’s attached to your serial port.
Since it can be another PC, a different kind of computer, a modem, an instrument, or
another device, we often just say “remote” or “remote device.”

RI

Ring indicator. A signal provided by the modem to indicate that a call is coming in (i.e.,
the phone is ringing).

RS-232

An EIA (Electronic Industries Association) standard that provides a physical description
(voltages, connectors, pin names, and purposes) of a serial asynchronous
communications link. This is the standard used by the IBM PC’s Asynchronous
Communications Adapter (and compatibles). The original intent of RS-232 was to
describe the link between a computer and a modem. However, many devices other than
modems (printers, plotters, laboratory instruments, and so on) have adopted some of the
conventions of RS-232.

RTS

Request to send. This is a modem control signal that the UART uses to tell the modem
that it is ready to receive data.

S-registers

A register in a Hayes-compatible modem that stores configuration information. Lower
numbered S-registers are somewhat standardized, but higher numbered S-registers are
generally used for different purposes by different modem manufacturers.

script

A list or file containing communications commands. Script languages are often provided
by general-purpose communications programs (such as Kermit, Telix and Procomm
Plus) to automate standard operations.
48 Glossary

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
G

lo
ssary
scrollback view

When a terminal is in scrollback view, it shows a history of data that have scrolled off the
top of the display view.

scrolling region

A range of lines within which writes to the screen and scrolling are restricted.

serial data

Refers to data transmitted over a single wire where bits are represented as either high or
low signals over a specified period of time. This is in contrast to parallel data, where each
bit is represented by its own “wire.”

server

An application that listens on a socket for client connection attempts.

SNPP

Simple Network Paging Protocol, a formal specification of transmitting alphanumeric
page requests over TCP/IP networks (e.g. Internet). A paging service must provide an
SNPP server as a facility before a pager may be contacted via SNPP.

socket

A Windows object that is created using a combination of an IP address and port number.
A socket is used to make a network connection between two computers.

start bit

The bit in a serial stream that indicates a data byte follows. This value cannot be changed;
UART communications always uses one start bit.

stop bits

The bits in a serial stream that indicate all data bits were sent. One or two stop bits can be
used. The number of stop bits is one of the line parameters needed to describe a serial
link.

streaming protocol

A file transfer protocol that doesn’t require an acknowledgement for each block. Such
protocols are usually much faster than non-streaming protocols because the transmitter
never pauses to wait for an acknowledgement.

TAP

Telelocator Alphanumeric Protocol, a formal specification for transmitting alphanumeric
page requests over a telephone line, typically using a modem. TAP includes means of
entering pages manually via the phone keypad or a terminal program, however these
procedures are awkward and error-prone. APRO’s support of TAP is directed at its
specification for direct computer transmission of paging requests. TAP is also known as
1Glossary 249

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
G

lo
ss

ar
y

2

the “IXO” protocol or the Motorola “PET” (Personal Entry Terminal) protocol.

Telnet

A network protocol designed to allow two network computers to communicate via a
terminal screen.

terminal emulator

Software that interprets special sequences of characters as video control information (for
setting colors, positioning the cursor, etc.) rather than data. This process is referred to as
“emulation” because it emulates the behavior built into serial terminals (such as the DEC
VT100 terminal).

terminal

A device (or software) that displays received data to a CRT and transmits keyboard
characters to a host computer. A “dumb terminal” is one that does no local processing of
the data it receives from the host. A “smart terminal” is capable of interpreting special
“escape sequences,” allowing the host to move the terminal’s cursor, change the colors
used to display text, etc.

trigger

An Async Professional term describing an event or condition noted by the internal
dispatcher and passed to an application through a VCL event handler.

UART

An acronym for Universal Asynchronous Receiver Transmitter. This is the device (usually
one integrated circuit) that serializes and deserializes data between the CPU and the
serial data line.

V.17

CCITT 7200, 9600, 12000, and 14400 bps faxmodem standard.

V.21

CCITT 300 bps faxmodem standard.

V.22

CCITT 1200 bps modem standard.

V.22bis

CCITT 2400 bps modem standard.

V.25bis

CCITT communications command set. Frequently implemented in addition to the AT
command set.
50 Glossary

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
G

lo
ssary
V.27, V.27 ter

CCITT 2400 and 4800 bps faxmodem standard.

V.29

CCITT 7200 and 9600 bps faxmodem standard.

V.32

CCITT 9600 bps communications standard which describes a standard modem
modulation technique. Any 9600 baud modem that complies with V.32 can connect to
any other V.32 compliant modem (this is an improvement from the early days of 9600 bps
communication when only modems from the same manufacturer could connect to each
other).

V.32bis

CCITT standard for data modem modulation rates up to 14400 bits per second.

V.34

CCITT 28800 bps communication standard which describes a standard modem
modulation technique. V.34 includes several advanced features designed to get as much
performance as possible out of a given telephone connection. The top speed of 28800 bps
occurs only under optimal conditions; normal telephone conditions usually yield lower
throughput, but still substantially higher than V.32.

V.42

CCITT error correcting protocol standard. Includes both MNP-4 and LAP-M error
correction protocols.

V.42bis

CCITT 4:1 data compression protocol. This data compression scheme generally achieves
a much higher degree of compression than is possible with MNP.

V.FC/V.Fast

An early unratified version of the V.34 specification. V.34 modems can usually connect to
V.FC and V.Fast modems, but usually at lower rates than with other V.34 modems.
1Glossary 251

13 11 1012 Identifier Index

11

1517 16 Subject IndexGlossary

252 Glossary

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
In

d
ex
Index

A

alphanumeric paging 242
anachronism 49
ANSI, definition of 242
Apd components See also TApd
APF format 172
APJ file 52
APJ format 172
ASCII 130
asynchronous serial communication 18, 242
AT commands 242
AutoOpen 75, 198
AWMODEM.INI 208
AwWin32 device layer 42
AwWnsock device layer 42

B

baud rate 19, 242
Bell 103 242
Bell 212A 242
BMP 140, 153, 154, 218
bps 243
break 22, 243

C

caller ID 55
CancelCall 98
carrier wave 47
CCITT 243
change directory 124
character set mapping 200
character, receiving 78
character-time 243

checksum 243
choosing a modem 46
Class 1 modems 49
Class 2 modems 49
client 243
Client mode 120
COMM.DRV 244
common problems 60
communications overview 10
ComNumber 67, 68, 74, 120, 171
comport

configuring 38, 74
defined 243

COMX 38
ConcatFaxes 145, 148
configuring

comport 38, 74
device 85
fax device 142
modem 51
TAPI device 91
terminal 198

control connection 235
converting

document format 140
fax format 153

CoverFileName property 52
CoverPage 144, 147
CRC 244
CreatePhonebookEntry 118
creating

fax client 166
fax job 51
phonebook entry 232

CTS 110, 113, 116, 117, 244
Cvt2Fax 218
 i 1

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
In

d
ex

i

D

data
available trigger 41
bits 20, 244
compression 244
trigger 41

DataTriggers 80
DCB 244
DCD 244
DCE 244
DCU files 3
DCX 140, 153, 218
debugging 58
delay, inserting 108
DelayTicks 69, 108, 109
demonstration programs 203
DestinationDir 172
detecting

DTMF 174
line state change 112
packet 83
print job 161
string 80

device layers 42, 244
device, configuring 85
Dial 119
dialing

defined 94
with RAS 118

Dial-Up Networking 122, 234
directory

displaying 126
for installation 3

Dispatcher 78
dispatcher 41, 78, 79
displaying

directory 126
status lights 110

divisor latch 24, 25
DNS 244
document format, converting 140

Domain 118
dot notation 245
downloading a file 128
DSL 47
DSR 110, 113, 116, 117, 245
DTE 245
DTMF 174

detecting 57, 174
DTR 116, 117, 245
dumb terminal 250

E

editing phonebook entry 233
emulator

defined 12, 250
mapping PC keystrokes 200
teletype 12, 200
VT100 12, 200

EnableVoice 174, 175, 176, 178
EndString 81, 84
EnhFont 140, 144
EntryName 118
error correction 245
event management 41
EXFAXOD.DPR 57
EXFODR.DPR 57
EXFODS.DPR 57
EXFTP1.DPR 123, 127, 129
EXRAS1.DPR 119
EXRECORD.DPR 57
EXTCONFG.DPR 93
External modems 48
EXVOICE.DPR 57

F

FAQs 60
fax class 49
fax client, creating 166
fax device, configuring 142
i Index

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
In

d
ex
fax engine 171
fax format, converting 153
fax job, creating 51
Fax Server

components 50
cover page 50
defined 50
device configuration 51
fax reception 51
job creation/scheduling 52
job header 50
queueing jobs 50
receiving/sending faxes 51
recipient header 50
scheduling faxes 51
transmission 53

faxing
defined 15
internal document 163

FaxMon 227
FaxNameMode 172
Fax-on-Demand 57
FaxServr 227
FaxSrvX 229
FIFO

control register 26
mode 245

file, downloading 128
FileMask 100, 101, 102
flow control 31, 116, 245
ForceSendQuery 172
framing error 22
FTP server 122
FTPDEMO 234
full duplex 245

G

GetChar 78, 79
GetDevConfig 92
GetPrinter 164

glossary 242
glyph 246

H

half duplex 246
handshaking 246
Hardware flow control 32, 116
help system 5
host name 246
HyperTerminal 67

I

inserting a delay 108
installation 3
installation directory 3
installing

printer driver 159
SAPI 4
SAPI 4 180

interface layer 246
interrupt

enable register 25
identification register 26

IP address 246
IRQ 246
ISDN 13
ITU-TSS 246

J

JobFileName property 52

K

Kermit 105
KnowledgeBase 7
1Index iii

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
In

d
ex

i

L

LAP M 246
line

control register 28
detecting state change 112
error 21, 246
parameters 19
status register 29

ListDir 126
ListEntries 118
loading configuration 93
logging in to FTP server 122
Lookup 246
lsXxx 113

M

MaxMessageLength 176
Microcom 247
MNP 247
ModDemo 208
modem 247

choosing 46
control register 29
flow control 35
status register 30

Modem Properties dialog box 92
ModemInit 172
Modems 13
Modulator/Demodulator 47
MonitorDir 172
Monitoring 111, 172
monitoring

dial attempt 96
flow control 117

msXxx 113

N

network login information 118

network shared-modem pool 247
news.turbopower.com 7
newsgroups 7

O

OnClick 131, 133
OnDialStatus 119
OnDocEnd event 167
OnFaxFinish 145, 148, 151
OnFaxLog 148, 151
OnFaxNext 147
OnFaxServerFatalError 172
OnFaxServerFinish 172
OnFtpStatus 122, 128
OnPacket 80, 81, 83, 84
OnPageStatus 133
OnProtocolFinish 70, 101, 105
OnProtocolLog 70, 101, 105
OnProtocolNextFile 101
OnSNPPError 130
OnSNPPSuccess 130
OnStringPacket 80, 83, 84
OnTapiConnect 96
OnTapiDTMF 174
OnTapiFail 96
OnTapiStatus 96
OnTriggerAvail 78, 80
OnTriggerLineStatus 112
OnTriggerModemStatus 112, 113
OnTriggerOutBuffFree 113
OnTriggerOutBuffUsed 113
OnTriggerOutSent 114
OnTriggerStatus 112
OnWsConnect 121
OnWsDisconnect 121
Output 76
overrun error 21
overview, communications 10
v Index

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
In

d
ex
P

packages 4
paging

defined 247
on phone line 132
over the Internet 130
receiver 247
server 247

Paging device, definition of 247
parallel communication 18
parity

defined 20, 247
errors 21

parser class 200
Password 118, 122
PCX 140, 153, 218
performance 40
phonebook entry

creating 232
editing 233

playing WAVE file 178
port 248
print job, detecting 161
printer driver, installing 159
printing APF file 157
protocol 14, 248
Protocol Transfers 100
ProtocolType 100, 104
pXxx 20

R

RAS 118
RASDEMO 230
RcvFax 216
receiver buffer register 24
receiving

characters 78
faxes 150, 171
files 104

recording WAVE file 176
Remote Access Service 122, 234
remote device 248
replaceable tags 144
RetrieveFile 128
RetrieveMode 128
RFC 959 236
ring indicator 248
RPI modems 47
RS-232 11, 196, 248
RS-485 11
RS-485 serial port 196
RS485Mode 196
RTS 116, 117, 248
RTS Control 196

S

SaveWaveFile 176, 177
scLogin 122
scOpen 122
script 248
scrollback view 249
scrolling region 249
SelectedDevice 92
selecting

speech recognition engine 187
speech synthesis voices 183

Send 130
SendFax 213
sending

characters 76
faxes 143, 147, 171
files 100

SendQueryInterval 172
serial data 249
Server 120, 227, 249
ServerAddress 122
SetDevConfig 92
SetPrinter 164
1Index v

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
In

d
ex

v

setting up
a Terminal Emulator 200
speech recognition 185
speech synthesis 182
Winsock port 120

Setup 3
ShowConfigDialogEdit 92
smart terminal 250
SNPP 249
socket 249
Software flow control 34, 117
software modems 47
speech recognition 185
speech recognition engine 187
speech recognition VU meter 189
speech synthesis

setting up 182
speech synthesis voices 183
S-registers 248
start bit 249
StartCond 83, 84
StartManualReceive 152
StartManualTransmit 146
StartString 81, 83, 84
StartTransmit 70, 101, 102, 142, 145, 148,

162, 164
StartWaveRecord 176, 177
status lights, displaying 110
status trigger 41
StatusDisplay 119
stop bits 20, 249
StopWaveRecord 176
Streaming protocol 249
string, detecting 80
stXxx 113
system requirements 2

T

TAdTerminal 12, 68, 76, 78, 81, 110, 198,
199, 200

TAdTTYEmulator 12, 198, 200
TAdVT100Emulator 12, 198, 200
TApdAbstractFax 171, 172
TApdComPort 11, 67, 68, 74, 76, 78, 80, 81,

83, 91, 94, 96, 98, 100, 104, 110, 111, 112,
114, 116, 117, 120, 132, 142, 143, 147, 150,
151, 163, 171, 174, 176, 178, 196, 198, 199,
200

TApdDataPacket 11, 14, 80, 81, 83, 84, 108
TApdDialerDialog 94
TApdFaxClient 15, 50, 166
TApdFaxClient.MakeFaxJob method 53
TApdFaxClient.SchedDT property 52
TApdFaxConverter 15, 140, 143, 153, 155,

157, 163
TApdFaxDriverInterface 161, 163, 164, 166
TApdFaxLog 143, 145, 147, 150, 163, 215,

217
TApdFaxPrinter 15, 71, 157, 224
TApdFaxServer 15, 50, 166, 171
TApdFaxServerManager 15, 50, 166, 171,

172
TApdFaxStatus 143, 145, 147, 150, 163, 215,

217
TApdFaxUnpacker 15, 140, 153, 161
TApdFaxViewer 15, 71, 155, 157, 222
TApdFtpClient 118, 122, 126, 128, 203, 234
TApdModemDialer 94
TApdProtocol 14, 70, 100, 104
TApdProtocolStatus 70, 101
TApdRasDialer 118, 120, 203, 230
TApdRasStatus 118, 119
TApdReceiveFax 15, 71, 142, 150, 151, 152,

153, 155, 157, 171, 216
TApdSendFax 15, 71, 140, 142, 143, 144, 145,

146, 147, 148, 161, 163, 164, 171, 213
TApdSLController 110, 111, 112
TApdSModem 13, 95, 96, 98, 100, 104
TApdSNPPPager 130, 132
TApdStatusLight 110, 111, 112
TApdTapiDevice 13, 91, 94, 95, 96, 98, 100,

104, 142, 174, 176, 178
i Index

13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
In

d
ex
TApdTAPPager 130, 132
TApdWinsockPort 11, 74, 118, 120, 130
TAPI

defined 13
versions supported 56

TAPI device
configuring 91

TAPI device, configuring 91
TAPI voice support 55
TapiDevice 171
TButton 130, 132
TCP/IP 130
technical support 59
TEdit 130, 132
Telelocator Alphanumeric Protocol, defini-

tion 249
teletype (TTY) emulator 12, 200
Telnet 250
TermDemo 204
terminal

configuring 198
control sequences 12
defined 12, 250

terminating a connection 98
TIFF 140, 153, 154, 218
timer trigger 41
TLabel 130, 132
TMemo 130, 132
transmit holding register 24
trigger

defined 250
overview 41

TTapiConfigRec 91
tutorials 73

U

UART 10, 18, 22, 24, 250
Unimodem/5 55
Unimodem/V 55
UserName 118, 122

using speech synthesis and recognition over
a phone 191

V

V.17 250
V.21 250
V.22 250
V.22bis 250
V.25bis 250
V.27 251
V.29 251
V.32 251
V.32bis 251
V.34 251
V.42 251
V.42bis 251
V.FC/V.Fast 251
ViewFax 222
VT100 emulator 12, 200, 204

W

WAVE file, playing 178
WIN.INI 38
Winmodems 47
Winsock 11, 74, 120, 121, 122
WriteString 199
WsAddress 120, 121
WsMode 120
WsPort 120, 121
www.turbopower.com/search 7
www.turbopower.com/support 7
www.turbopower.com/tpslive 7

X

XOff character 245
XOn character 245
1Index vii

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
In

d
ex

v

Y

Ymodem 105
YmodemG 105

Z

Zmodem 70, 83, 100, 104, 105
iii Index

VCL components for advanced communications

DEVELOPER’S GUIDE
A “how-to” guide for getting the most from Async Professional

Developer’s Guide

Async Professional

Async Professional


F

©2001,TurboPower Software Company

For over fifteen years you’ve depended on TurboPower to provide the best

tools and libraries for your development tasks. Now try Sleuth QA Suite 3

and Orpheus 4—two of TurboPower’s best selling products—risk free.

Both are fully compatible with Borland Delphi and C++Builder, and are

backed with our expert support and 60-day money back guarantee.

S L E U T H Q A S U I T E 3™

Want to make your code the best it can be?

More than just a debugger and profiler, Sleuth QA

Suite 3 is a full-cycle debug/optimization/test

solution that helps you meet quality assurance

requirements from coding through product

deployment and beyond. No expensive add-ons

are required—everything you need is in one box.

O R P H E U S 4 ™

Make the first impression count with new Orpheus 4, the award-winning

user interface construction kit from TurboPower Software Company.

Your customers will feel comfortable the minute your application starts,

resulting in them spending less time learning how to use your program and

more time getting to know what makes it special.

D E V E LO P, D E B U G , O P T I M I Z E

F R O M S TA R T T O F I N I S H , T U R B O P O W E R

H E L P S Y O U B U I L D Y O U R B E S T

Try the full range of
TurboPower products.

Download free Trial-Run Editions
from our Web site.

www.turbopower.com

The TurboPower family of tools—
Winners of 6 Delphi Informant Readers’ Choice Awards
for 2001! Company of the Year in 2000 and 2001.

Async Professional 4 requires Microsoft Windows (9x, Me, NT, 2000 or XP) and Borland Delphi 3 and above, or C++Builder 3 and above


TM

TM

	Table of Contents
	Chapter 1: Introduction
	Whether you are new to Async Professional or one of our many long-time customers, we would like t...
	Since the first version of APRO back in 1991, TurboPower has invested several thousand man-hours ...
	Async Professional 4 builds on this award-winning foundation to add the features you need for com...
	In fact, comments received from earlier users of APRO served as the genesis for the manual you ar...
	After the Chapter 1 introductory material, Chapter 2 of this guide gives a brief overview of comm...
	We wrote the Developer’s Guide to give you a head start using the Async Professional components. ...
	As many long-time customers can tell you, TurboPower Software Company is genuinely committed to y...
	System Requirements
	To use Async Professional, you must have the following hardware and software:
	1. A computer capable of running MicroSoft Windows 95/98/ME or Windows NT/2000. A minimum of 16MB...
	2. Delphi 3 or later or C++Builder 3 or later.
	3. A hard disk with at least 50MB of free space is strongly recommended. To install all Async Pro...
	4. To rebuild the Async Professional fax printer drivers, you will need Delphi 1.02, and Microsof...

	Installation
	Async Professional can be installed directly from the CD-ROM (or diskettes) or you can copy the c...
	The setup program
	Insert the TurboPower Product Suite CD and follow the instructions presented by the SETUP program.
	If you are installing from diskettes, run SETUP. EXE to start the installation process. Since SET...
	SETUP installs Async Professional in the C:\APRO directory by default. You can specify a differen...
	SETUP creates a new program group named Async Professional (you can specify a different name, if ...
	Async Professional help
	The Async Professional help file.

	Last minute news about Async Professional
	A text file that describes changes to the documentation and new features added after the manual w...

	Installing for multiple compiler versions
	Async Professional supports Borland Delphi 3.0 or greater and Borland C++Builder 3.0 or greater. ...
	Alternatively, if you switch versions frequently, it might be more convenient to keep separate co...
	If you are installing support for multiple versions of C++Builder, the headers for the highest se...
	If you need to make changes to any of the included resource files, be aware that the *.RC files s...

	Component installation
	Installing Packages
	To avoid version conflicts with applications using different versions of the Async Professional p...
	ANnn_YVv.DPL (or .BPL for Delphi 4 and 5 and C++Builder 3 and 4)

	Nnn is the version number of APRO. Y indicates whether the package is a run-time package (R) or a...
	Async Professional help and the design-time package are automatically installed into the VCL if A...
	In order for the run-time packages to be “seen” by the VCL (and the design-time package) you need...
	Be sure to alter the library path so that it includes the path to the APRO source files (Tools | ...
	The component palette is updated with three tabs: “APro”, “APro Fax”, and “APro TAPI.”
	The “APro” tab provides access to the standard comport, advanced terminal, and protocol components:
	The “APro Fax” tab provides access to the fax components:
	The “APro TAPI” tab provides access to the TAPI components:
	These same icons are used throughout the Developer’s Guide and Reference Guide when referring to ...
	When you do the component installation, C++Builder automatically generates C++ header files for e...

	Installing integrated help
	The Async Professional help system is typically installed into Delphi and C++Builder by the SETUP...
	Installing for Delphi 4 and greater and C++Builder
	Use the Help | Customize options from the IDE to install APRO32.HLP. Please refer to your compile...

	Installing for Delphi 3.0
	To manually install Async Professional help into Delphi 3, perform the following steps to install...
	Edit the Delphi3.cnt file (in the Delphi Help directory) and add the following line to the “index...
	:Index Async Professional Reference =Apro32.hlp
	The first time you attempt to access Async Professional help, Delphi/Windows won't be able to loc...

	Technical Support
	The best way to get an answer to your technical support questions is to post it in the Async Prof...
	To get the most from the newsgroups, we recommend that you use dedicated newsreader software. You...
	Newsgroups are public, so please do not post your product serial number, 16-character product unl...
	The TurboPower KnowledgeBase is another excellent support option. It has hundreds of articles abo...
	Other support options are described in the product support brochure included with Async Professio...

	Chapter 2: Communications Basics
	Communications is a very difficult field of programming. Several factors contribute to this perce...
	One of the biggest goals of Async Professional is to insulate you from these difficulties. It’s v...
	This chapter introduces some of the communications fundamentals in a fairly basic way and describ...
	Communications Overview
	As mentioned in the previous section, communications is a tough field. Many people consider it a ...
	Some of the advantages of programming in Windows include the fact that you don’t need to know thi...
	The next few sections present communications basics in what is hoped to be a fairly simple manner...

	Data In/Out
	Every communications program has at least one thing in common: the fact that the program “communi...
	The TApdComPort and TApdWinsockPort are low-level components designed to handle the actual sendin...
	These low-level components provide an interface to the rest of the world for your program. You’ll...

	Terminals and Emulators
	Terminals display data, emulators decide what the data should be. They are always used together i...
	An emulator has two jobs. It must, first and foremost, interpret the data coming through a serial...
	The second job for the emulator is to convert PC keystrokes into their terminal equivalents. With...
	Hence, it is the emulator that provides the characteristics of a given terminal. Async Profession...
	The terminal, on the other hand, has it easy. It merely displays the text that the emulator provi...

	Modems and TAPI
	Modems are hardware devices that make it possible to connect to a phone line via a standard seria...
	Async Professional has several components that are designed to simplify the process of adapting t...
	TAPI, which stands for Telephony Application Programming Interface, is an attempt by Microsoft to...
	APRO’s TAPI support is contained within the TApdTapiDevice component.

	Protocols
	Protocols come in many flavors. The word protocol simply refers to a standard way of doing someth...
	Async Professional provides the TApdProtocol component, and its associated status and logging com...

	Faxing
	Sending a fax essentially consists of binary transmission of data over the phone lines, using a s...
	Only certain modems are capable of sending or receiving fax images. These modems are classified b...
	Async Professional contains several stand-alone components that help you deal with the details of...
	APRO also includes three components that make it easy to create a distributed fax server system: ...

	Chapter 3: Advanced Communication Principles
	This chapter provides a more advanced discussion of some the principles of serial communications ...
	This chapter is mainly intended for users who want (or need) a more detailed understanding of som...
	Basics of Asynchronous Communication
	After presenting some basic concepts, this discussion continues into some of the lower-level deta...
	The broadest definition of serial communications includes anything that transmits or receives dat...
	In the PC world, when people speak of serial communications they are invariably talking about the...
	Given the wide variety of serial peripherals that someone might be using and the corresponding va...
	Information presented throughout this manual refers to something called a UART, short for Univers...
	Line parameters
	Because serial communications are somewhat standardized, you don’t need to know the lowest level ...
	9600,N,8,1

	This describes a communications link operating at 9600 baud, no parity bit, eight data bits, and ...
	You specify line parameters in your Async Professional application whenever you open a serial por...
	Baud rate
	Baud rate is commonly used to mean bit rate—the number of bits transmitted per second. This is te...
	When given a choice, you should generally select a baud rate as high as possible to give you the ...
	Generally, any x386 machine should be able to achieve 9600 baud. Faster x486 and Pentium machines...
	Other factors affect your choice of baud rate as well. For example, if you’re using a 2400 baud m...

	Data bits
	A data byte can contain 5, 6, 7, or 8 bits. The vast majority of applications use either 7 or 8 b...
	Many time-sharing systems, such as CompuServe, work with only 7 data bits because that’s all they...

	Stop bits
	Stop bits follow the data bits in the serial data stream to mark the end of each data byte. The v...

	Parity
	Parity describes a bit checking scheme. When used, all of the bits in each data byte are added to...
	The possible values for parity are shown in Table 3.1.
	Table 3.1: Possible parity values
	Whether or not you should use parity depends on your application. Generally, you don’t need to us...

	Line errors and breaks
	Serial I/O, like all forms of I/O, is subject to errors. A line error has occurred when the chara...
	Line errors can also occur if the receiver and transmitter are using different line parameters or...
	Here are the types of line errors that can occur, what they mean, and how you can deal with them:
	UART overrun error
	This error means that a second character arrived at the serial port before the first one was proc...
	In some cases the problem is not that the baud rate is too high, but that another process is leav...

	Parity errors
	Parity errors occur when the parity bit received differs from the parity bit calculated. If the r...
	Parity errors can also be caused by interference on the data line (i.e., transmission errors). Wh...

	Framing errors
	A framing error occurs when the data bits in the serial stream are not followed by a valid stop b...
	Framing errors can also be caused by electrical interference. Again, the recommended solution for...

	Breaks
	Breaks are not really line errors, but they do represent a special line condition. A line break o...

	Universal Asynchronous Receiver/Transmitter (UART)
	This topic covers the detailed inner workings of the UART chip, which is at the heart of most ser...
	In some circumstances, however, you might find this information helpful for thinking through a de...
	The brain of the serial communications facilities on IBM PCs, PS/2s, and compatibles is a chip ca...
	The UART is responsible for all of the grunt work of serial communications. It transmits data by ...
	The UART does all of these things in response to requests from a program. The program communicate...
	The IBM PC architecture also associates a hardware interrupt with each UART. You can use the seri...
	These addresses and interrupts are governed by two standards: the IBM PC standard for Com1 and Co...
	Table 3.2: IBM PC standard addresses and interrupts
	Table 3.3: IBM PC/2 standard addresses and interrupts
	Even though the standards only define up to eight serial ports, many serial port boards support a...

	Registers
	The Windows communications driver communicates with a UART via the UART registers. It controls th...
	Each of these registers also has one or more names, as shown in the following descriptions. Regis...
	Register 0: receiver buffer register (read)
	transmit holding register (write)
	divisor latch low (read/write)
	Figure 3.1: Register 0 bit definitions.
	Register 0 has three names and three purposes. When you read from register 0, you are reading the...
	The third purpose of register 0 comes into play when setting the baud rate. When the divisor latc...
	The baud rate divisor is determined by this equation:
	divisor = 115200 / baud rate

	Hence, the process for setting the baud rate on a UART is to calculate the baud rate divisor, set...

	Register 1: interrupt enable register (write) divisor latch high (read/write)
	Figure 3.2: Interrupt enable bit definitions.
	UARTs can generate an interrupt in response to four different conditions. Programs specify which ...
	A character was received.
	The transmitter just finished transmitting a character.
	An error or break signal occurred.
	A modem status signal changed.

	To enable a particular interrupt, set the proper bit in a byte mask and write the byte mask to th...
	Register 1 also has a second name (divisor latch high) and a second purpose. When the divisor lat...

	Register 2: interrupt identification register (read) FIFO control register (write)
	Figure 3.3: Interrupt identification bits.
	This is the counterpart to the interrupt enable register. Once you’ve enabled the desired interru...
	Since it is possible, even likely, that more than one condition can occur at the same time, bit 0...
	Because multiple conditions can occur at the same time, the UART presents the conditions in a pri...
	Table 3.4: UART and corresponding bit mask priority
	The FIFO time-out condition obviously occurs only on UARTs operating with a FIFO (first in, first...
	In addition to providing information about pending interrupt conditions, this register also provi...
	Register 2 doubles as a writable register for enabling and disabling FIFO buffers. In its role as...
	Figure 3.4: FIFO control bit definitions.

	The first step in specifying FIFO control information is always to set bit 0. This enables writin...
	Writing a 1 to bit 1 clears just the receive FIFO buffer. Writing a 1 to bit 2 clears just the tr...
	Bit 3 is used to control DMA access.
	Bits 6 and 7 are used to specify the receive FIFO trigger level, the number of bytes stored in th...

	Table 3.5: Possible trigger levels and corresponding bit values

	Register 3: line control register (write)
	Figure 3.5: Line control bit definitions.
	The line control register is used to set the line parameters baud rate, data bits, stop bits, and...
	Bits 0 and 1 specify the number of data bits to use. Table 3.6 shows how these bits are interpreted.
	Table 3.6: Bit interpretation
	Bit 2 specifies the number of stop bits to use. When bit 2 is set, two stop bits are generated an...
	Bits 3, 4, and 5 control parity are shown in Table 3.7.

	Table 3.7: Parity type
	“Space” parity means that a 0 is transmitted after each character regardless of its value. “Mark”...
	Bit 6 is used to generate a line break. While this bit is set, the UART continuously sends zeros ...
	Bit 7 is the divisor latch access bit described earlier. When this bit is set, registers 0 and 1 ...

	Register 4: modem control register (write)
	Figure 3.6: Modem control register bit definitions.
	The primary purpose of the modem control register is to manage the DTR (Data Terminal Ready) and ...
	Bit 0 controls the state of the DTR signal. Writing a 1 into bit 0 raises the DTR signal and writ...
	Bit 2, OUT1, is a general purpose output signal, but it’s not used in the PC architecture. Bit 3,...
	Bit 4 enables an internal loopback mode that can be used to test some facets of proper UART opera...

	Register 5: line status register (read)
	Figure 3.7: Line status bit definitions.
	This register provides information about line error and line break conditions. It also provides t...
	Bit 7, the FIFO error status bit, is set if a character in the FIFO has a line error. Generally, ...
	Bit 6, when set, indicates that the transmitter shift register is empty. The shift register, used...
	Bit 5, when set, indicates that the transmitter holding register, register 0, is empty. You shoul...
	Bit 4 is set whenever a line break is received. This also causes a line error interrupt.
	Bits 3 through 1, when set, indicate a line error has occurred. The nature of these line errors i...
	Bits 4 through 1 are automatically cleared when this register is read.
	Bit 0, when set, indicates that characters are waiting in the receive buffer register (register 0...

	Register 6: modem status register (read)
	Figure 3.8: Modem control register bit definitions.
	Just as the UART can control the modem control signals, it can also read and report on the status...
	The modem status register actually provides two types of information. The most significant 4 bits...
	All these signals assume that a modem is connected to the serial port by a cable that contains al...
	Bit 7, data carrier detect (DCD), means that the local modem has established a connection to a re...
	Bit 6, ring indicator (RI), is set whenever the phone is ringing (i.e., a call is coming in and n...
	Bit 5, data set ready (DSR), is generally set whenever a modem is attached and turned on. This as...
	Bit 4, clear to send (CTS), is generally set whenever an attached modem is ready to receive data....
	Bits 3 through 0 are set whenever the corresponding modem signal changes. These bits are automati...
	For consistency, bit 2 is called the delta RI bit, but its proper name is trailing edge ring indi...

	Flow control
	Flow control refers to the ability of either end of a communications link to control the rate of ...
	Consider the example of a PC that is receiving data, at a very high speed, from an attached devic...
	The solution is for the PC to tell the other end of the link to temporarily stop sending data. On...
	You can look at flow control from two perspectives: receive flow control and transmit flow contro...
	Flow control comes in two varieties: hardware flow control and software flow control. Hardware fl...
	It is the Windows communications driver that imposes or honors flow control requests. Async Profe...
	The following two subsections discuss flow control between a PC and whatever is directly attached...
	Hardware flow control
	Hardware flow control (sometimes called hardware handshaking) is implemented using control signal...
	Many other serial devices—printers, plotters, lab instruments, and so on—also support these modem...
	Nevertheless, much common ground does exist, particularly among modems. The type of automatic har...
	Async Professional hardware flow control is completely automatic. Once you turn it on, the Window...
	Standard hardware flow control requires that the modem should raise the CTS signal before the PC ...
	Flow control happens automatically. The application can continue to send and receive characters w...
	This covers everything you need to know to use hardware flow control with Async Professional. The...
	Let’s look at the case of a PC that is sending commands to a laboratory instrument and receiving ...
	Figure 3.9: Data transmission example.

	The lines between the PC and the instrument represent some of the physical lines within the cable...
	DTR - Data terminal ready
	RTS - Request to send
	DSR - Data set ready (“data set” is another term for modem)
	CTS - Clear to send

	These signals have two states: on and off. (You might also see these two states referred to as hi...
	DTR is commonly turned on by your application to indicate that your program is up and running; bu...
	DSR is an input signal from the attached device that, when on, means it is correctly attached and...
	DTR and DSR aren’t usually used in flow control (although the standard Windows communication driv...
	The RTS and CTS signals are the ones commonly used to provide hardware flow control. These signal...

	Software flow control
	Software flow control (sometimes called XOn/XOff flow control) is implemented by assigning specia...
	Conversely, if the input buffer rises above the specified threshold, the communication driver sen...
	As with hardware flow control, all of this is handled automatically by the communication driver. ...
	You should set the buffer full level with more of a safety margin than is necessary for hardware ...
	Conservative flow control levels are 75% of buffer size for the cutoff point and 25% of buffer si...
	Async Professional also provides support for one-way software flow control. The two types of one-...

	Modem flow control
	This discussion focuses on how flow control relates to various modem configurations. Figure 3.10 ...
	Figure 3.10: Modem flow control.

	Terminal1 and Terminal2 are PCs. Terminal1 is local; Terminal2 is at a distant location. Modem1 i...
	Let’s take the simplest case first. Assume that the two modems are both low-speed (2400 bps), non...
	This is not to say that you’d never have flow control in such situations. Certainly you can’t hav...
	Let’s say that Terminal1 is sending lots of text to the person sitting in front of Terminal2. Onc...
	Now consider the case of managed modem links. “Managed modem link” means that the link between Te...
	Before this can work, both modems must agree to the same management scheme. Currently, the modem ...
	In short, each of these standards provides a managed link between the two modems. This provides o...
	The following example clarifies what is meant by end-to-end hardware flow control. Suppose that T...
	You can also use software flow control in these cases. Unlike an unmanaged link, however, the sof...
	Managed links generally require some type of flow control—either software or hardware. This is tr...

	Serial Communication Under Windows
	Serial communications programming under DOS could often be an ordeal, requiring the programmer to...
	The 32-bit Windows communications routines send serial port control and I/O requests to a standar...
	The 32-bit Windows communications routines are also thread aware and support multiple concurrent ...
	When a TApdComPort component is opened, it creates three threads—a communications thread and a ti...
	The communications thread uses the WIN32 communications functions SetCommMask and WaitCommEvent t...
	As its name suggests, the timer/dispatcher thread has two roles: timing and dispatching. It sleep...
	The dispatcher is working within its own thread, not within your application’s thread. To avoid s...
	If a needed application thread, say a thread that created a protocol, is blocked (waiting for a s...
	To avoid such deadlocks, trigger events are always generated conditionally. If the recipient thre...
	Some events can be missed without serious penalty. If other events (OnTriggerAvail, for example) ...
	The best way to avoid missed events is to assure that threads that are expecting events are never...
	Configuring windows
	The configuration of serial ports under Windows is controlled by various INI file settings. These...
	WIN.INI contains the following entries for communications:
	[Ports]
	COM1:=9600,n,8,1,x
	COM2:=9600,n,8,1,x
	...
	Entries of this format set the initial line parameters used when a port is opened. These settings...
	SYSTEM.INI contains the following entries for communications:

	Com1AutoAssign=-1
	Com2AutoAssign=0
	Com3AutoAssign=2
	...
	These entries tell Windows how to handle device contention, which occurs when two virtual machine...

	...
	COM3Base=02E8
	COM3Irq=3
	...
	These entries specify the base address and IRQ of a serial port. If they are missing, Windows use...
	COMIrqSharing=Off

	This entry controls Windows IRQ sharing logic for serial ports. Windows sets this to Off unless y...

	COM1FIFO=1
	COM2FIFO=1
	...
	These entries tell Windows whether to enable the receive FIFO (first in, first out) buffer availa...
	The FIFO buffer can improve throughput and reduce errors due to UART overruns. It should always b...
	COMBoostTime=2

	This entry applies to all serial ports. It is the number of milliseconds by which the time slice ...
	Windows documentation advises caution when changing this value, since too large a value may preve...

	Performance Issues
	Communications applications gain a lot from the Windows architecture: a common API for communicat...
	Because there are so many variables that come into play (machine speed, INI file settings, ill- b...
	There are several ways you can optimize performance:
	Use as low a baud rate as possible. For example, don’t use a baud rate of 38.4K baud when the dat...
	While communicating, reduce the number of active DOS boxes that are performing background process...
	Use a 16550 UART, which has a 16 byte FIFO buffer, and set COMxFIFO=On in SYSTEM.INI.
	Set the COMBoostTime value in SYSTEM.INI above 2.
	Replace COMM.DRV with a higher performance communications driver. See the README.TXT file for a l...
	In those cases where incoming data is extremely critical, use an intelligent serial port board, w...

	Event Management
	Windows is a message-driven environment and Async Professional is designed to fit into the Window...
	The standard dispatcher is started whenever a comport component is opened. Each opened port start...
	Once the dispatcher thread gains control, it copies received data from the Windows buffers to its...
	Async Professional uses the term trigger for any event that can cause the dispatcher to generate ...
	Data available trigger: received data is available.
	Data match trigger: a particular character or character string was received.
	Status trigger: a line or modem status event occurred.
	Timer trigger: a timer expired.

	Triggers are associated with a particular port component. The TApdComPort component contains a va...
	The TApdComPort component registers a message handler with the dispatcher so that it receives eac...
	The triggers and their associated event handlers are described fully in the documentation for the...

	Device Independence
	Async Professional provides for device independence by identifying a set of required core routine...
	This is huge step forward for applications programmers since it places the burden of supporting o...
	Since Windows already defines a standard communications API, Async Professional simply adopts thi...
	AwWin32: The dlWin32 device layer supports the standard WIN32 API (VCOMM and all vendor supplied ...
	AwWnsock: The dlWinsock device layer supports network and Internet communications using Winsock.
	TAPI: Located in the AwWin32 units is a descendant device layer designed specifically to support ...

	The dlWin32 and dlWinsock device layers are the only ones available to your application directly....
	Async Professional also provides for custom device layers. Custom device layers are implemented a...
	A custom device layer derived directly from TApdBaseDispatcher must override the following method...
	function OpenCom(
	ComName: PChar; InQueue, OutQueue : Cardinal) : Integer;
	virtual; abstract;
	function CloseCom : Integer; virtual; abstract;
	function EscapeComFunction(
	Func : Integer) : LongInt; virtual; abstract;
	function FlushCom(Queue : Integer) : Integer; virtual; abstract;
	function GetComError(
	var Stat : TComStat) : Integer; virtual; abstract;
	function GetComEventMask(
	EvtMask : Integer) : Cardinal; virtual; abstract;
	function GetComState(var DCB: TDCB): Integer; virtual; abstract;
	function ReadCom(
	Buf : PChar; Size: Integer) : Integer; virtual; abstract;
	function SetComState(
	var DCB : TDCB) : Integer; virtual; abstract;
	function WriteCom(
	Buf : PChar; Size: Integer) : Integer; virtual; abstract;
	function SetupCom(
	InSize, OutSize : Integer) : Boolean; virtual; abstract;

	function WaitComEvent(var EvtMask : DWORD;
	lpOverlapped : POverlapped) : Boolean; virtual; abstract;
	Unfortunately, describing how to write a new device layer is beyond the scope of this manual. If ...

	Chapter 4: Overviews and Troubleshooting Sessions
	Communications programming is such an intricate undertaking—and Async Professional so comprehensi...
	This chapter provides overviews of two issues that have been raised frequently by APRO users: pic...
	Three troubleshooting topics give some common questions and answers that appear regularly in the ...
	Overview: Choosing a Modem
	This topic covers recommendations for picking the right modem for your next project.
	“What modem should I buy?” is a very common question. Those of you asking the question probably h...
	It’s a jungle out there!
	The modem market is extremely dynamic and competitive. Any modem may cease to exist tomorrow. (In...
	This level of competition has driven margins down to a bare minimum. Unfortunately, the competiti...

	You find yourself thinking, “this should be easier…”
	The more you learn about modems—the more you learn about their quirks and how to deal with them—t...
	Is the situation hopeless? Well, no. To be honest, most modems work reasonably well most of the t...

	Quick lesson: modems 101
	What exactly is a modem, anyway? Well, even that is hard to answer these days as it’s become a bi...
	The term “modulated” or “modulation” refers to the technique of combining information (the data f...
	Besides the basic modulation/demodulation, a modem has a lot of other jobs to do. It needs to be ...
	The good news is most of this work is done without your knowledge (or even APRO’s knowledge). Jus...

	What should I buy?
	Here are some general guidelines. Remember, these are only general guidelines. TurboPower has sev...
	Avoid Winmodems and RPI modems, otherwise known as software modems
	These modems offload some of the “smarts” of the modem to the host computer. They use software dr...
	However, software modems have several disadvantages, for example:
	The host computer is forced to donate resources in support of the communications session (not onl...
	Shifting these duties to software results in an overall loss of efficiency (custom hardware is be...
	Most software modems will replace the standard Windows serial port drivers. This could affect all...
	The modems are tied to the operating system. Most currently do not work in alternate operating sy...
	The software drivers that support these modems are proprietary, and cannot be used directly witho...

	How can you tell if a modem is a software modem? Usually, you’ll see “Winmodem” or “RPI” somewher...

	Use external modems
	This is simply the best way to ensure you get a modem with all its brains intact. It does not see...

	Don’t “chase the latest technology”
	Modem makers often race to hit the market first with a new feature in order to gain market share....

	Get a modem with the features you need, and no more
	In other words, if you need a modem strictly for faxing, why get a voice modem? This is a cost sa...

	Get a modem that supports more than one fax class if you’ll be faxing
	Having options in this area is a good thing—if one of the available standards doesn’t work for a ...
	The fax class defines the communication between APRO and the modem. Class 2 and 2.0 modems handle...
	With Class 1 and Class 1.0 modems, APRO is intimately involved with nearly all aspects of the fax...

	Apply common sense
	Use well-known brands. It’s tough to know for sure if the maker of your modem will still be aroun...
	Buy from a store with a reasonable return policy. This should allow you to test the modem in the ...
	If you need to buy many modems for a project, buy one or two first and test them thoroughly with ...

	Overview: Using the Fax Server Components
	This topic shows what the TApdFaxServer, TApdFaxServerManager and TApdFaxClient components do and...
	Async Professional has always had components to send, receive, and manipulate faxes: TApdSendFax ...
	To clarify the inter-dependencies of the Fax Server Components, the following discussion breaks t...
	What is a fax server?
	A fax server is a group of functions that send, receive and manipulate faxes. It should also hand...
	The fax job
	The key to the Fax Server Components is the concept of the fax job. The Fax Server Components use...

	Who does what?
	The TApdFaxServer, TApdFaxServerManager, and TApdFaxClient work together. Each component has it’s...
	The TApdFaxServer component is the only component out of the three that communicates with the phy...
	The TApdFaxServerManager component manages the TApdFaxServer for sending faxes. The TApdFaxServer...
	The TApdFaxClient component’s primary task is to create fax jobs. The fax job format is a modific...

	Device configuration
	The TApdFaxServer component makes configuring a device to use for faxing a straight forward proce...
	OK, it’s a bit more complicated than this, but not much more. If the TApdComPort.TapiMode propert...

	Fax reception
	The TApdFaxServer component handles receiving faxes and the process is surprisingly easy. The TAp...

	Job creation and scheduling
	Fax jobs, in our context, are files that contain fax data to send (similar to our APF format) and...
	Most of the properties of the TApdFaxClient component are included in the APJ file that it will c...
	Figure 4.1: The Object Inspector.

	Enter the name of the text cover file in the CoverFileName property, and the name of the APF fax ...
	The JobFileName property is the name of the APJ that will be created. JobName is a short descript...
	The other properties are specific to the recipient of the fax. HeaderLine, HeaderRecipient, and H...
	There is one property that is not accessible at design time, or through the Object Inspector: the...
	Once all of this information is entered, call the TApdFaxClient.MakeFaxJob method, and the job fi...
	To add additional recipients to the fax job, so the identical cover page and fax file is sent to ...
	After all this is done, just copy the APJ to the directory being monitored by the TApdFaxServerMa...

	Fax transmission
	As we’ve already mentioned, submitting a fax job for transmission consists of creating the fax jo...
	Set up the TApdComPort and TApdTapiDevice components, as you did earlier for fax reception (if yo...
	The TApdFaxServer component sends faxes when the TApdFaxServerManager component gives it a fax to...
	The TApdFaxServer component will ask the TApdFaxServerManager component for fax jobs on an interv...

	Advanced topics
	What we’ve talked about here is a fairly simple fax server. You can easily expand on this by havi...

	Related examples
	FXSRVR.DPR
	FXCLIENT.DPR

	Overview: TAPI Voice Support
	This topic offers tips and techniques for using voice modems and TAPI voice support.
	TAPI Voice support is only available with the Unimodem/V TSP (TAPI Service Provider) and the Unim...
	Windows 95 OSR1 does not come with Unimodem/V, but OSR2 does. You can verify whether you have Uni...
	Windows NT does not support the Unimodem/V Driver. However, some manufacturers may supply their o...
	Be aware that manufacturers (hardware and TSPs) may include or exclude TAPI functionality at thei...
	Implement organized and optimized state machines in the OnTapiDTMF and/or OnTapiWaveNotify event ...
	Both the telephone line and the modem must support Caller ID for an application to support it. Ca...
	Wave files used in TAPI applications must be of a specific format. Simply opening the Sound Recor...
	Trim your wave prompts. In sound recorder (or any wave editor), trim silence from the beginning a...
	In general, it is good practice to set InterruptWave to True. This allows callers to break the cu...
	The sound quality provided by a voice modem varies greatly between manufacturers, models, and som...
	Not all voice modems or TSPs provide accurate call progress detection. This means that your modem...
	Async Professional negotiates for TAPI version 1.4, which is backwards compatible in all later TA...
	Unimodem does not provide any voice modem capabilities. Unimodem/V, Unimodem/5, and some third pa...

	Table 4.1: Unimodem availability by operating system
	Related examples
	EXFAXOD.DPR - Example of Fax-on-Demand (Faxes sent on separate call)
	EXFODR.DPR - Example of Fax-on-Demand (Faxes received on same call)
	EXFODS.DPR - Example of Fax-on-Demand (Faxes sent on same call)
	EXRECORD.DPR - Example of Voice Recording on a call (simple VoiceMail)
	EXVOICE.DPR - Example of DTMF Detection

	Overview: Debugging Windows Communications Programs and Communications Hardware
	In this section, we provide a collection of tips and techniques for debugging Windows communicati...
	First, always make sure that your hardware is set up correctly (check connections, cabling, switc...
	Using the debugger
	If you have used the DOS libraries Async Professional or Async Professional for C/C++, you may re...
	Under Windows you can ignore those cautions. The communications interrupt service routine is in t...
	Be aware, however, that it is still possible for incoming data to stack up in the communications ...

	Using the Async Professional debugging tools
	Async Professional has several built-in features that aid in the debugging process. The simplest ...
	Async Professional provides another auditing tool called dispatch logging, which works at a much ...

	Getting technical support
	TurboPower Software Company offers a variety of technical support options. For details, please se...
	Technical support is always a tough job and throwing communications problems into the equation ma...
	First and foremost, if you’re writing an application and not getting anything, please try the sup...
	If you’ve proven that all is well with your hardware but your program still isn’t behaving proper...
	Finally, any Async Professional routine that can fail generates an exception or returns an error ...
	If you tried a “known good program” and applied all the built-in debugging tools and you’re still...

	Common problems
	Here’s a brief discussion of some of the common problems that popped up during development and te...
	Nothing works, not even the supplied test programs. What’s wrong?
	Probably a hardware or cabling problem that you’ll need to figure out before you can go any furth...
	Despite the increasing power and sophistication of desktop computer systems, serial communication...
	When it’s not working there are a number of places to start looking, depending on your particular...

	The modem isn’t working. What do I do?
	Modems are peculiarly delicate devices; they can be easily damaged by physical events, static dis...
	In general:
	Make sure that the phone line is attached and is live (check with an actual phone device to make ...
	Make sure the phone cord is going into the correct modem jack. Most modems have two: one “line” i...

	If you’re using an external modem:
	Make sure the modem is plugged in and turned on (you should see lights on the front panel).
	Make sure that the cable between the computer and the modem is attached to the correct port on th...

	If you’re using an internal modem:
	Make sure the modem is seated properly in the card slot.
	See the sections below on Com Port setup for information on possible resource conflicts.

	If none of these seem to help:
	Make sure the phone cord is good (test with a phone using that cord).
	If possible try a different modem device in the same situation to eliminate a bad modem as the pr...
	Try the serial port checks listed next.

	The serial ports aren’t responding. What do I do?
	Serial communications on a PC operates through serial “ports”. These originally were physical wir...
	For communication through a serial port to occur, the port must be configured correctly. Such con...
	In order to function, serial ports require certain “resources” from the computer in which they ar...
	On IBM PC Compatibles, the traditional resource assignments for the first four serial ports (COM1...
	Table 4.1: IBM PC serial port resource assignments
	Note that traditionally COM1 and COM3 share an IRQ, as do COM2 and COM4; this is a hold over from...
	On modern systems it is generally desirable and often necessary to set COM3 and COM4 to different...
	Internal modems generally present themselves as COM Ports to the computer and similarly require t...
	Some specialized serial port hardware (multi-port boards) permit IRQ sharing among a number of po...

	My modem/serial port card says it’s “Plug and Play”. What does that mean?
	Plug and Play is a set of standards that allows computer systems to query devices installed in th...
	Some add-on cards for serial ports are Plug and Play, as are many internal modems. Also most mode...
	For one or two ports generally these should work as-is, but a common requirement to get multiple ...

	How do I set up those “on-board” serial ports?
	If your system’s main circuit board (motherboard) features on-board serial ports, there are gener...
	The BIOS Setup program is usually accessible via a special keystroke at system start-up (often pr...
	Accessing the Serial Port settings varies widely among BIOS models, so check your main board or c...
	Often you can set the on-board ports for some kind of “automatic” mode, which means the IRQ and a...
	Ports set up in this way will generally end up with standard IRQ and Base Address assignments, bu...

	What do I do if something isn’t working?
	If you’re having problems with serial ports with hardware set IRQ and Address values (often set b...
	If you’re having problems with serial ports with Plug and Play settings: try setting the on- boar...
	If the ports are on an expansion card then the same caveat applies as for internal modems: make s...
	Another possibility is that Windows itself has conflicting or erroneous settings for the ports.

	How do I fix the Windows settings?
	In Windows 9x/ME/2000, all hardware is managed through the “Device Manager.” This is accessible i...
	Look for entries under “Ports (COM & LPT)”. Clicking on one of the ports listed there and selecti...

	What about TAPI?
	TAPI (Telephony Application Programming Interface) is a formalized set of routines to allow progr...
	Windows 95 introduced a generic implementation of TAPI that all programs could access, enhanced v...
	If you’re having trouble using TAPI to access or operate a particular device:
	Make sure the device actually appears in the list of TAPI devices (in the “Modems” applet in Cont...
	If you’re using Windows 95 you may need to obtain the updated TAPI (UNIMODEM/V) software from Mic...
	If you have device names that are not unique within the first 20 characters, early versions of TA...
	Make sure you have installed the latest drivers (INF files) for your modem. Check the modem manuf...

	What about WinModems?
	A current trend in modem technology is to simplify the physical hardware of the modem device and ...
	This approach has made some sophisticated modem technology much cheaper to implement, but has als...
	First, these software drivers generally expose a TAPI interface, and so these modems often must b...
	Second, the drivers for these modems are generally Operating System specific: a driver for Win95 ...
	Often the installation software for a WinModem’s drivers will replace the default Windows serial ...
	If you’re having trouble getting a software modem (WinModem) to work:
	Make sure that the drivers are installed correctly.
	Make sure you have the latest drivers from the manufacturer.
	Make sure to open the modem using TAPI in your program.

	Why am I getting leOverrun errors?
	A UART overrun occurs when a character is received at the serial port before the Windows communic...
	There is a finite limit to the speed at which a given machine can receive data. Because of the ex...
	A more likely cause, however, is that another Windows task is leaving interrupts off for too long...
	One known cause of long interrupts-off time is virtual machine creation and destruction. The only...
	Interrupts could also be left off by other Windows device drivers or virtual device drivers.

	Why do my protocol transfers seem slow?
	This usually means that your status routine is taking too much time. You shouldn’t try to do any ...

	Why am I getting parity and framing errors?
	Either you’re operating with a different set of line parameters than the remote device, or your c...

	My protocol transfer never gets started. What’s wrong?
	This could be due to any of several problems, including mismatched line parameters, wrong protoco...

	My Zmodem file transfer program generates lots of psBlockCheckError errors and psLongPacket error...
	The answer in this case is almost always lack of hardware flow control. The problem shows up in Z...

	Troubleshooting a Connection Session
	This topic shows some common questions and answers for troubleshooting a communications session.
	Every communications session relies on a stable connection to perform at its best. Modern phone l...
	Problems with a communications session can come in many forms and at different times in the sessi...
	Here are some common problems and how to resolve them.
	Why do I get an exception when I try to open the TApdComPort component?
	To open a port, the TApdComPort component tries to activate the serial port of the computer ident...
	The following example shows one way of handling this:
	procedure TForm1.OpenBtnClick(Sender : TObject);
	begin
	while True do
	try
	ApdComPort1.Open := True;
	Break;
	except
	on EOpenComm do
	ApdComPort1.ComNumber := 0;
	end
	end;

	Why won’t my device respond to commands?
	If you send configuration and initialization commands to the device and it does not respond, make...

	Why does my mouse stop working when I open the port?
	If other serial devices stop working when the port is opened, the most likely cause is an interru...

	Why won’t my device dial?
	If you get a “No Dialtone” message, make sure the phone cord is inserted into the correct jack on...

	Why will my device dial but not connect?
	If the modems start handshaking but do not complete the connection, try placing the call again. T...

	Why do I get random or garbage characters after I have connected?
	Make sure the TApdComPort.Parity, StopBits, DataBits, and Baud properties match the system to whi...

	Why, whenever I enter characters into the TAdTerminal component, are they doubled?
	Turn off the Echo mode of the modem, or set the TAdTerminal.HalfDuplex property to False.

	What do I do when I have tried everything, but still nothing works?
	There are a few times when changing the component properties do not seem to work. If the phone li...
	uses
	OoMisc;
	procedure TForm1.DialBtnClick(Sender : TObject);
	begin
	ApdComPort1.Output := 'AT&F'#13;
	DelayTicks(36, True);
	ApdComPort1.Output := 'ATDT 260 9726'#13;
	end;
	If this doesn’t work, look at the system environment. Remove any non-standard device drivers one-...
	Also, most Winmodem, HSP, or other software modems replace the standard serial port drivers when ...

	Troubleshooting a File Transfer
	This topic shows some common questions and answers for troubleshooting a file transfer.
	You have a stable connection, everything seems to be in order, but the file transfers aren’t work...
	Where do I begin?
	The first step is finding out what caused the failure. To do that, look at the ErrorCode paramete...

	Why does nothing happen when I call StartTransmit or StartReceive?
	If you are not already using one, drop a TApdProtocolStatus component on the form; this provides ...

	Why does only one OnProtocolFinish event fire when I send or receive a batch transfer?
	The TApdProtocol.OnProtocolFinish event fires when the entire protocol session is complete. In a ...

	Why are my transfers slow?
	You first need to determine if this is a valid problem. Each character that gets transferred take...

	Troubleshooting a Fax Session
	This topic shows some common questions and answers for troubleshooting a fax session.
	Under normal circumstances, faxing with Async Professional is reliable, but you have been having ...
	A fax connection is very similar to a data connection and a file transfer, but the faxing protoco...
	Why can I dial a remote fax machine, but am immediately disconnected?
	Set the TApdSendFax/TApdReceiveFax.FaxClass to fcClass1. Fax Class 1 is almost universally suppor...
	Change the ApdSendFax/ApdReceiveFax.ModemInitString to &H3&I2&R2S7=90.
	Add S36=0 to the ModemInitString.
	Lower the BPS to 7200, 4800 or 2400.
	Download the latest drivers for your device from the manufacturer.

	Why are the faxes missing sections or have spots on them?
	This is a result of poor phone line quality. Place the call again. Each time a call is placed the...

	Why are my received faxes elongated or shortened when I view or print them?
	The TApdFaxViewer.AutoScaleMode determines whether or not the fax being viewed is automatically s...

	Why do I get “Bad response from modem” errors before dialing?
	This is, by far, the most common error, especially when TAPI is used to configure the modem. Ther...
	If you are suffering from the fax class query confusion problem, the dispatcher log will show a r...

	Chapter 5: Tutorials
	Async Professional is unlike most other component libraries. To use the components successfully, ...
	Whether you are just starting with Async Professional or are developing advanced applications, st...
	In each topic, you will find the components that are required for the particular task, prerequisi...
	Setting Up a Comport
	This topic shows how to set up a serial port for serial communications.
	The TApdComPort component is the basic building block of the Async Professional component library...
	Keep in mind that this topic, along with all other topics involving the TApdComPort may also appl...
	Required components
	TApdComPort

	Prerequisite topics
	None

	Related components
	None

	What to do
	The most important property of this component is the ComNumber property, which associates the com...
	Next, you need to know the line settings of the device with which you want to communicate. Most d...
	The next step is to control when the port it opened with the Open property. When Open is set to T...

	Related examples
	EXCOM.DPR

	Sending Characters
	This topic shows how to send characters out through the serial port.
	One of the basic tasks of serial communication is sending data through the serial port. All data ...
	Required components
	TApdComPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TAdTerminal

	What to do
	Drop a TApdComPort component on the form and set it up for your system (see “Setting Up a Comport...
	In your code, where you want to send the characters, assign the characters to be sent to the TApd...
	The following example sends “Hello world” to the remote system as a result of a button click:
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdComPort1.Output := 'Hello world';
	end;
	If you need to transmit non-character data, such as numerical data, that data must be converted t...

	...
	ApdComPort1.Output := #6
	...

	Related examples
	EXCOM.DPR

	Receiving Characters
	This topic shows how to receive characters through the serial port.
	A typical communications session includes receiving information that is coming in through the ser...
	Required components
	TApdComPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TAdTerminal

	What to do
	Whenever characters are received at the serial port, the Windows communications driver notifies A...
	Due to the event-driven nature of the Windows communications drivers, the number of available cha...
	The following example retrieves characters from the dispatcher buffer, puts them into a buffer, a...
	var
	Buffer : string[255];
	BufferIndex : Integer;

	procedure TForm1.ApdComPort1TriggerAvail(
	CP : TObject; Count : Word);
	var
	I : Word;
	C : Char;
	begin
	for I := 1 to Count do begin
	C := ApdComPort1.GetChar;
	if C = #7 then
	MessageBeep(0)
	else if C in [#32..#126] then begin
	Buffer := Buffer + C;
	if (Pos('Hello', Buffer) > 0) then
	Caption := 'Got Hello';
	end;
	end;
	end;

	Related examples
	EXCOM.DPR

	Detecting a Specific String in the Data Stream
	This topic shows how to detect a string, individual character, or sequence of characters that hav...
	Detecting specific strings or characters in the incoming data stream is an integral part of most ...
	Required components
	TApdComPort
	TApdDataPacket

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Sending Characters” on page�76.

	Related components
	None

	What to do
	Drop a TApdDataPacket component on the form and right-click it. Select the Edit Properties item t...
	The string can include both control and alpha-numeric characters. When you enter an alpha-numeric...
	Searching for an alpha-numeric string
	In the property editor, enter the string without quotes. In your code, assign the string inside s...
	ApdDataPacket1.StartString := 'Hello';

	Searching for a control character/characters
	In the property editor enter “#X”, where X is the decimal value of the character, or “^X” where X...
	ApdDataPacket1.StartString := #2;
	ApdDataPacket1.EndString := ^B;

	Searching for an alpha-numeric string with control characters
	In the property editor enter the string within single quotes and the control characters without q...
	ApdDataPacket1.StartString := 'Hello'#2;
	ApdDataPacket1.StartString := 'Hello'#13'World'#13;
	Here are the steps for a quick example that detects when “OK” is received:
	Drop the following components on the form: TApdComPort, TAdTerminal, TApdDataPacket, and TButton....
	Caption := 'Received OK';

	Now, double-click the button to create its OnClick event handler. In this example, we’ll send the...
	ApdComPort1.Output := 'ATZ'#13;

	Compile and run the application. Select the comport to which your modem is attached and then clic...

	Related examples
	QRYMDM.DPR
	EXWPACKT.DPR

	Detecting a Packet
	This topic shows how to detect packets (i.e., specific sequences of characters).
	Many times, the data you’re trying to collect during a communications session is in the form of a...
	Required components
	TApdComPort
	TApdDataPacket

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Sending Characters” on page�76.
	“Detecting a Specific String in the Data Stream” on page�80.

	Related components
	None

	What to do
	The TApdDataPacket component can handle several forms of packet structures. There are only a few ...
	1. A specific character/string. For example, the Zmodem auto-receive message would look something...
	2. A bracketed packet. This is when the data characters are bracketed between two known character...
	3. A known start character or string followed by data of known length. An example might be <STX>”...
	4. A known number of characters followed by a terminating character, e.g., “XXXX”<ETX>. This pack...

	Related examples
	EXWPACKT.DPR
	QRYMDM.DPR

	Selecting and Configuring a Modem
	This topic shows how to select and configure a modem that is attached to a comport.
	Configuring a modem is a very important process in a communications application. The modem has to...
	Usually, the services provided by TAPI are adequate. TAPI will configure the modem and establish ...
	Required components
	TApdComPort
	TAdModem

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TApdTapiDevice

	What to do
	The TAdModem provides access to a few thousand modem configuration structures, which define the c...
	The TAdModem has properties, events and methods that are similar to the TApdTapiDevice. The Selec...
	One of the benefits of the TAdModem over the TApdTapiDevice is that the serial port is accessible...
	Consider our non-standard line settings from above. All you need to do is set the TApdComPort pro...

	Related examples
	EXMDM.DPR

	LibModem
	The TAdModem uses LibModem to access the modemcap modem database. The modemcap modem database is ...
	LibModem (through the TApdLibModem component) provides access to modemcap to add, delete and modi...
	Required components
	TApdLibModem

	Prerequisite topics
	None

	Related components
	TAdModem
	TApdTapiDevice

	What to do
	The modemcap database consists of modem configuration information, which was extracted from the W...
	Accessing modemcap
	The modemcap database is accessed through the TApdLibModem. The TAdModem component provides limit...
	You will need to have an instance of the TApdLibModem class, so add “AdLibMdm” to your uses claus...
	type
	TForm1 = class(TForm)
	...
	public
	LibModem : TApdLibModem;
	end;
	Create the form’s OnCreate event handler and add the following to create the LibModem instance:

	...
	LibModem := TApdLibModem.Create(Self);
	...
	Free LibModem when the form is freed also, so create the OnDestroy event handler and free the cla...
	Drop a TListBox component on the form and set the Name property to lbxManufacturers. Drop a TButt...

	...
	ModemColl : TApdLmModemCollection;
	...
	Create the button’s OnClick event handler and add the following. Since we want this list box to c...

	procedure TForm1.Button1Click(Sender: TObject);
	var
	I : Integer;
	Manufacturer : string;
	begin
	LibModem.LibModemPath := {add the path to modemcap};
	ModemColl := LibModem.GetModemRecords;
	lbxManufacturers.Items.Clear;
	for I := 0 to pred(ModemColl.Count) do begin
	Manufacturer := ModemColl[I].Manufacturer;
	if lbxManufacturers.Items.IndexOf(Manufacturer) = -1 then
	lbxManufacturers.Items.Add(Manufacturer);
	end;
	end;
	You now have something that can be compiled and executed, go ahead and do that now. When you clic...
	The next thing to do is display a list of modems from a selected manufacturer. Drop another TList...

	procedure TForm1.lbxManufacturersClick(Sender: TObject);
	{ displays all modems from the selected manufacturer }
	var
	I : Integer;
	begin
	if lbxManufacturers.ItemIndex > -1 then begin
	lbxModels.Items.Clear;
	for I := 0 to pred(ModemColl.Count) do
	if ModemColl[I].Manufacturer = lbxManufacturers.Items[lbxManufacturers.ItemIndex] then
	lbxModels.Items.Add(ModemColl[I].ModemName);
	end;
	end;
	This event handler will iterate through the collection of modem records and add the names of the ...
	The final step in our little project is to select a modem from the second list box, extract the m...

	procedure TForm1.lbxModelsDblClick(Sender: TObject);
	var
	LmModem : TLmModem;
	ModemName : string;
	SourceDetailFile : string;
	I : Integer;
	begin
	if lbxModels.ItemIndex > -1 then begin
	ModemName := lbxModels.Items[lbxModels.ItemIndex];
	for I := 0 to pred(ModemColl.Count) do
	if ModemColl[I].ModemName = ModemName then begin
	SourceDetailFile := ModemColl[I].ModemFile;
	Break;
	end;
	LibModem.GetModem(SourceDetailFile, ModemName, LmModem);
	LibModem.AddModem('mymodems.xml', LmModem);
	end;
	end;
	This project can be used to create a “installed modems” detail file, which can then be used witho...

	Related examples
	EXMDM.DPR
	EXMDMCAP.DPR
	EXLIBMDM.DPR

	Configuring a TAPI Device
	This topic shows how to perform custom configuration for a TAPI device.
	One of the best reasons to use TAPI to configure a device is that the operating system maintains ...
	Required components
	TApdTapiDevice

	Prerequisite topics
	“Selecting and Configuring a Modem” on page�85.

	Related components
	None

	What to do
	The normal configuration for a TAPI device is good for normal connections (i.e., 8 data bits, no ...
	TAPI uses an opaque structure to contain the configuration for the device. This means that you ca...
	The TTapiConfigRec record is designed to hold the TAPI configuration structure.
	The GetDevConfig method gives you the current configuration structure.
	The SetDevConfig method forces a new configuration structure on the TAPI device.
	The ShowConfigDialogEdit method displays the Modem Properties dialog and gives you the changed co...
	The first thing to do is select the device that you want to modify by setting the TApdTapiDevice....
	procedure TForm1.ReconfigureTheTapiDevice;
	var
	CfgRec : TTapiConfigRec;
	Reg : TRegistry;
	begin
	{ Initialize the record with current config, show config dialog
	and store the result }
	CfgRec := ApdTapiDevice.ShowConfigDialogEdit(
	ApdTapiDevice.GetDevConfig);
	{ Set the device configuration with the result from the dialog }
	ApdTapiDevice.SetDevConfig(CfgRec);

	{ Save the new configuration to the registry. This assumes a key
	of 'Software\MyApp' exists, each TAPI device that is
	configured will have it’s own key named the same as the
	device name }
	Reg := TRegistry.Create;
	try
	Reg.OpenKey(
	'Software\MyApp' + ApdTapiDevice.SelectedDevice, True);
	Reg.WriteBinaryData(
	'TapiConfig', CfgRec.Data, CfgRec.DataSize);
	finally
	Reg.Free;
	end;
	end;
	To load the configuration when you need it, do something like this:

	procedure TForm1.ConfigureTheDevice;
	var
	CfgRec : TTapiConfigRec;
	Reg : TRegistry;
	begin
	{ Clear record }
	FillChar(CfgRec, SizeOf(CfgRec), #0);
	{ Make sure we have selected a valid TAPI device }

	if (ApdTapiDevice.SelectedDevice = '') or
	(ApdTapiDevice.TapiDevices.IndexOf(
	ApdTapiDevice.SelectedDevice) = -1) then
	ApdTapiDevice.SelectDevice;

	{ Get configuration from registry }
	Reg := TRegistry.Create;
	if Reg.KeyExists(
	'Software\MyApp' + ApdTapiDevice.SelectedDevice) then begin
	try
	Reg.OpenKey('Software\MyApp' +
	ApdTapiDevice.SelectedDevice, False);
	CfgRec.DataSize := Reg.ReadBinaryData('TapiConfig',
	CfgRec.Data, SizeOf(CfgRec.Data));
	finally
	Reg.Free;
	end;
	{ Set the device configuration }
	ApdTapiDevice.SetDevConfig(CfgRec);
	end else
	{ This modem hasn’t been added, so we need to show the dialog
	and add the custom configuration }
	ReconfigureTheTapiDevice;
	end;

	Related examples
	EXTCONFG.DPR

	Dialing
	This topic shows how to dial a phone number through a modem or similar device.
	Sooner or later, you’ll probably want to dial a modem and connect to another system. This can be ...
	Required components
	TApdComPort
	TApdTapiDevice

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Sending Characters” on page�76.
	“Selecting and Configuring a Modem” on page�85.

	Related components
	TApdModemDialer
	TApdDialerDialog

	What to do
	TApdComPort
	If you are establishing a connection without a TApdTapiDevice component, then you or your code mu...
	ApdComPort1.Output := 'ATDT 260 9726'#13;

	When the remote answers, and the modems negotiate a mutually supported connection type, the modem...

	TAdModem and TApdTapiDevice
	The TAdModem and TApdTapiDevice components each have a method called Dial that dials a given numb...
	AdModem1.Dial ('555 1212');

	or
	ApdTapiDevice1.Dial ('555 1212');

	The phone numbers used for these methods will dial the given phone number, without regard to the ...
	When the TAdModem component detects that the modem is connected, the OnModemConnect event is gene...

	Related examples
	ApdTapiDevice
	EXTAPID.DPR
	EXSMODEM.DPR

	Monitoring the Progress of a Dial Attempt
	This topic shows how to keep track of what is happening after a dial command is executed up to th...
	Simply dialing is usually not enough to do anything in a communications application; eventually, ...
	Required components
	TApdComPort
	TApdTapiDevice (32-bit)

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Selecting and Configuring a Modem” on page�85.
	“Dialing” on page�94.

	Related components
	TApdTapiStatus

	What to do
	TApdTapiDevice
	Unlike the TApdSModem component, the TApdTapiDevice component relies on TAPI to provide the conne...
	procedure TForm1.DialBtnClick(Sender : TObject);
	begin
	ApdTapiDevice1.Dial('260 9756');
	end;

	procedure TForm1.ApdTapiDevice1TapiStatus(
	CP : TObject; First, Last : Boolean; Device, Message, Param1,
	Param2, Param3 : Integer);
	begin
	if First then
	Label1.Caption := 'Got first status message'
	else if Last then
	Label1.Caption := 'Got last status message'
	else
	Label1.Caption :=
	ApdTapiDevice1.TapiStatusMsg(Message, Param1, Param2);
	end;

	Related examples
	ApdTapiDevice
	EXTAPID.DPR

	Terminating a Connection
	This topic shows how to terminate a connection by hanging up the device/modem.
	Now that you know how to connect to another system, you need to know how to disconnect from it (t...
	Required components
	TApdComPort
	TAdModem
	TApdTapiDevice

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Dialing” on page�94.

	Related components
	None

	What to do
	The TApdTapiDevice.CancelCall and TAdModem.CancelCall methods terminate either a dialing attempt ...
	procedure TForm1.HangupBtnClick(Sender : TObject);
	begin
	ApdTapiDevice1.CancelCall;
	end;

	procedure TForm1.ApdTapiDevice1TapiFail(Sender : TObject);
	begin
	if ApdTapiDevice1.Canceled then
	{ Cancelled the call }
	else
	{ TAPI detected a failure }
	end;
	end;

	procedure TForm1.ApdTapiDevice1TapiPortClose(Sender : TObject);
	begin
	{ TAPI has now terminated the connection, do any cleanup
	routines }
	end;

	Related examples
	EXTAPID.DPR

	Sending Files
	This topic shows how to send text or binary files to a remote system via a serial connection.
	You can connect to another system, send and receive characters and strings, and terminate that co...
	Required components
	TApdComPort
	TApdProtocol

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Dialing” on page�94.

	Related components
	TApdProtocolStatus
	TApdProtocolLog

	What to do
	The TApdProtocol component can be used with a connection made with a TApdSModem, TApdTapiDevice, ...
	The next step is to determine which file or files are to be sent. If you are sending a single fil...
	If the files can not be described with a file mask, or you are using a non-batch protocol such as...
	To start the transfer, call the StartTransmit method. When the transfer is complete, the OnProtoc...
	The following example sends a single file selected from an OpenFile dialog, which is invoked in t...
	procedure TForm1.SendFileBtnClick(Sender : TObject);
	begin
	OpenDialog1.FileMask := 'All files (*.*)|*.*';
	if OpenDialog1.Execute then begin
	ApdProtocol1.FileMask := OpenDialog1.FileName;
	ApdProtocol1.StartTransmit;
	end;
	end;

	procedure TForm1.SendAllFilesBtnClick(Sender : TObject);
	begin
	ApdProtocol1.FileMask := 'C:\SEND*.*';
	ApdProtocol1.StartTransmit;
	end;

	procedure TForm1ApdProtocol1ProtocolLog(
	CP : TObject; Log : Word);
	begin
	case Log of
	lfTransmitStart : Memo1.Lines.Add(
	ApdProtocol1.FileName + ' : started');
	lfTransmitOK : Memo1.Lines.Add(
	ApdProtocol1.FileName + ' : sent OK');
	lfTransmitFail : Memo1.Lines.Add(
	ApdProtocol1.FileName + ' : failed');
	lfTransmitSkip : Memo1.Lines.Add(
	ApdProtocol1.FileName + ' : rejected');
	end;
	end;

	procedure TForm1.ApdProtocol1ProtocolFinish(
	CP : TObject; ErrorCode : SmallInt);
	begin
	ShowMessage('File transfer complete');
	end;
	The following example sends all the files selected from an OpenFile dialog (configured to accept ...

	procedure TForm1.SendFilesBtnClick(Sender : TObject);
	begin
	OpenDialog1.FileMask := 'All files (*.*)|*.*';
	OpenDialog1.Options := [ofAllowMultiSelect];
	if OpenDialog1.Execute then begin
	Memo1.Lines.Clear;
	Memo1.Lines := OpenDialog1.Files;
	ApdProtocol1.FileMask := Memo1.Lines[0];
	Memo1.Lines.Delete(0);
	ApdProtocol1.StartTransmit;
	end;
	end;

	procedure TForm1.ApdProtocol1ProtocolNextFile(CP : TObject;
	var FName : TPassString);
	begin
	if Memo1.Lines.Count > 0 then begin
	FName := Memo1.Lines[0];
	Memo1.Lines.Delete(0);
	end;
	end;

	procedure TForm1.ApdProtocol1ProtocolLog(
	CP : TObject; Log : Word);
	begin
	case Log of
	lfTransmitStart : Status.Caption :=
	'Sending ' + ApdProtocol1.FileName;
	lfTransmitOK : Status.Caption :=
	ApdProtocol1.FileName + ' sent OK';
	lfTransmitFail : Status.Caption :=
	ApdProtocol1.FileName + ' failed';
	end;
	end;

	procedure TForm1.ApdProtocol1ProtocolFinish(
	CP : TObject; ErrorCode : SmallInt);
	begin
	ShowMessage('File transfers complete');
	end;

	Related examples
	EXPROT.DPR
	EXZSEND.DPR

	Receiving Files
	This topic shows how to receive text or binary files from a remote system via a serial connection.
	There are many situations where the information you want to get from the remote is in a file. The...
	Required components
	TApdComPort
	TApdProtocol

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Detecting a Specific String in the Data Stream” on page�80.

	Related components
	TApdProtocolStatus
	TApdProtocolLog

	What to do
	The TApdProtocol component can be used with a connection made with a TApdSModem, TApdTapiDevice, ...
	The Zmodem sender typically sends ‘rz’#13 (which stands for “receive zmodem”) to initiate the tra...
	For protocols that support batch transfers, e.g., Zmodem, Ymodem, YmodemG, and Kermit, several fi...
	The following example receives either a single file or a batch of files. As each file is transmit...
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdProtocol1.StartReceive;
	end;

	procedure TForm1.ApdProtocol1ProtocolLog(
	CP : TObject; Log : Word);
	begin
	case Log of
	lfReceiveStart : Status.Caption :=
	'Receiving ' + ApdProtocol1.FileName;
	lfReceiveOK : Memo1.Lines.Add(
	ApdProtocol1.FileName + ' received OK');
	lfReceiveFail : Memo1.Lines.Add(
	ApdProtocol1.FileName + ' failed');
	end;
	end;

	procedure TForm1.ApdProtocol1ProtocolFinish(
	CP : TObject; ErrorCode : Integer);
	begin
	ShowMessage('Transfer complete');
	end;

	Related examples

	EXZRECV.DPR
	Sending and Receiving Faxes on the Same Line
	This topic shows how to send a fax while waiting to receive a fax.
	A very popular usage of the APRO fax components is to use a single line to receive faxes, and sen...
	Required components
	TApdComPort
	TApdSendFax
	TApdReceiveFax
	TApdTapiDevice

	Prerequisite topics
	“Configuring a Device for Faxing” on page�142
	“Sending Faxes to One Recipient” on page�143
	“Receiving Faxes” on page�150

	Related components
	TApdFaxStatus
	TApdFaxLog

	What to do
	The TApdReceiveFax and TApdSendFax components are TAPI aware, and can use the services provided b...
	To illustrate this, create a new project and drop a TApdComPort, TApdTapiDevice, and TApdReceiveF...
	procedure TForm1.Button1Click(Sender: TObject);
	begin
	ApdReceiveFax1.StartReceive;
	end;
	When this is executed, the TApdTapiDevice will enter “autoanswer” mode and wait for incoming call...
	To add fax-sending capabilities, drop another TApdComPort and another TApdTapiDevice and a TApdSe...

	procedure TForm1.Button2Click(Sender: TObject);
	begin
	if ApdReceiveFax1.InProgress then begin
	ShowMessage('Receiving a fax, try again later');
	Exit;
	end;
	ApdSendFax1.PhoneNumber := '555 1212';
	ApdSendFax1.FaxFile := 'c:\default.apf';
	ApdSendFax1.StartTransmit;
	end;
	The InProgress property of the TApdReceiveFax will be True when the component is actually receivi...
	To make the TApdSendFax and TApdReceiveFax components work together through TAPI, their TapiDevic...

	Related examples
	EXTAPIFAX.DPR

	Inserting a Delay
	This topic shows how to delay execution of the next statement or section in your code for a speci...
	Even though working in the event-driven environment of Windows, there may come a time when you wa...
	Required components
	None

	Prerequisite topics
	None

	Related components
	None

	What to do
	There are several useful utilities provided with Async Professional. Perhaps the most useful is t...
	function DelayTicks(Ticks : LongInt; Yield : Bool) : LongInt;

	Ticks is the number of clock ticks for which to delay. There are about 18 clock ticks per second....
	The following example sends an Init command to a modem, pauses for 2 seconds, and then sends a di...
	procedure TForm1.ConfigAndDialBtnClick(Sender : TObject);
	begin
	ApdComPort1.Output := 'ATZ'#13;
	DelayTicks(36, True);
	ApdComPort1.Output := 'ATDT 260 9726'#13;
	end;

	Related examples
	None

	Displaying Status Lights
	This topic shows how to display the status of the different line states of the serial port.
	Most communications applications display virtual lights that show when a connection is made, if d...
	Required components
	TApdComPort
	TApdSLController
	TApdStatusLight

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TAdTerminal

	What to do
	There are eight line states that can be monitored in Async Professional through status lights as ...
	Table 5.1: Async Professional line states
	Drop a TApdComPort component on the form and configure it to match your system setup. Next, place...

	procedure TForm1.OpenBtnClick(Sender : TObject);
	begin
	ApdComPort1.Open := True;
	ApdSLController1.Monitoring := True;
	end;

	procedure TForm1.CloseBtnClick(Sender : TObject);
	begin
	ApdSLController1.Monitoring := False;
	ApdComPort1.Open := False;
	end;

	Related examples
	TERMDEMO.DPR

	Detecting Line State Changes
	This topic shows how to detect line state changes programmatically.
	The status lights are nice to have, but they are only visual clues for your users (i.e., you cann...
	Required components
	TApdComPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TApdSLController
	TApdStatusLight

	What to do
	The same status events that the TApdSLController component monitors can be handled with Status Tr...
	The status trigger types and events they fire are shown in Table 5.2.
	Table 5.2: Status trigger types
	A trigger type of stModem can trigger on the state changes shown in Table 5.3 and fires the OnTri...

	Table 5.3: stModem state changes
	A trigger type of stLine can trigger on these state changes and fires the OnTriggerLineError event:

	Table 5.4: stLine state changes
	A trigger type of stOutBuffFree occurs when the output buffer has more than the specified space a...
	A trigger type of stOutBuffUsed occurs when the output buffer has less than the specified space u...
	A trigger type of stOutSent occurs when any call to PutChar or PutBlock is made, including assign...
	Each trigger that is added returns a value of type Word that indicates which trigger fired the ev...
	The following example shows how to set up the triggers:

	type
	TForm1 = class(TForm)
	ApdComPort1 : TApdComPort;
	StartBtn : TButton;
	StatusLabel : TLabel;
	procedure StartBtnClick(Sender : TObject);
	procedure ApdComPort1TriggerStatus(CP : TObject; TriggerHandle : Word);
	public
	{ Public declarations }
	DCDTrig : Word;
	OutBuffUsedTrig : Word;
	OutSentTrig : Word;
	end;

	var
	Form1 : TForm1;
	implementation
	{$R *.DFM}

	procedure TForm1.StartBtnClick(Sender : TObject);
	begin
	DCDTrig := ApdComPort1.AddStatusTrigger(stModem);
	ApdComPort1.SetStatusTrigger(DCDTrig, msDCDDelta, True);
	OutBuffUsedTrig := ApdComPort1.AddStatusTrigger(stOutBuffUsed);
	ApdComPort1.SetStatusTrigger(OutBuffUsedTrig, 500, True);
	OutSentTrig := ApdComPort1.AddStatusTrigger(stOutSent);
	ApdComPort1.SetStatusTrigger(OutSentTrig, 0, True);
	end;

	procedure TForm1.ApdComPort1TriggerStatus(CP : TObject;
	TriggerHandle: Word);
	begin
	if TriggerHandle = DCDTrig then begin
	StatusLabel.Caption := 'DCD changed';
	ApdComPort1.SetStatusTrigger(DCDTrig, msDCDDelta, True);
	end else if TriggerHandle = OutBuffUsedTrig then begin
	StatusLabel.Caption := 'Output buffer has more that 500
	chars pending';
	ApdComPort1.SetStatusTrigger(OutBuffUsedTrig, 500, True);
	end else if TriggerHandle = OutSentTrig then
	StatusLabel.Caption := 'Something was transmitted'
	end;
	end.

	Related examples
	None

	Flow Control
	This topic shows how to set and monitor flow control settings.
	There are times when the receiving application cannot process incoming data as fast as it is bein...
	Required components
	TApdComPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	None

	What to do
	There are two methods of flow control: Hardware and Software. Hardware flow control uses the phys...
	Hardware Flow Control
	To implement Hardware Flow Control, set the TApdComPort.HWFlowOptions property to the set of opti...
	Figure 5.1: Data transmission.

	The RTS and DTR properties of the TApdComPort refer to the RTS and DTR lines of the local serial ...
	If that all seems confusing, it is. Simply put, if you want to implement hardware flow control, t...

	Software Flow Control
	To implement Software Flow Control, set the TApdComPort.SWFlowOptions to the desired state of flo...

	Monitoring Flow Control
	The TApdComPort.FlowState property returns the current flow control state. If FlowState is fcOff,...

	Related examples
	None

	Dialing with RAS
	This topic shows how to dial up a network connection with the TApdRasDialer.
	Before you can use a TApdWinsockPort or TApdFtpClient to communicate with another machine on an I...
	Required components
	TApdRasDialer

	Prerequisite topics
	None

	Related components
	TApdRasStatus

	What to do
	This tutorial assumes that RAS (Remote Access Service, also known as Dial-Up Networking) is insta...
	First, you need to specify the desired phonebook EntryName which contains necessary dialup networ...
	If you choose, you can alter the network login information, such as UserName, Password, and Domai...
	Next, you must specify the phone number to dial and the dial mode (synchronous or asynchronous) a...
	The following example shows how to dial up a network connection using synchronous dialing mode:
	procedure TForm1.Dial1Click(Sender: TObject);
	var
	Error : Integer;
	begin
	ApdRasDialer1.EntryName := 'MyServer';
	ApdRasDialer1.PhoneNumber := '9,800-555-1212';
	ApdRasDialer1.DialMode := dmSync;
	Error := ApdRasDialer.Dial;
	if (Error = ecOK) then
	Caption := 'Connected'
	else
	Caption := ApdRasDialer.GetErrorText(Error);
	end;

	Related examples
	EXRAS1.DPR

	Setting up a Winsock Port
	This topic shows you how to set up a TApdWinsockPort component and connect to a Winsock Socket.
	Direct connection over phone lines, where one modem calls another modem, does not fit the require...
	Required components
	TApdWinsockPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TApdRasDialer
	TApdSocket

	What to do
	The TApdComPort component is designed for communications through the serial ports while the TApdW...
	The TApdWinsockPort component can handle a single connection, either in Client or Server mode. A ...
	The network connections are listed in the WsLocalAddresses property. A network connection to use ...
	If you need to connect to the remote site through a proxy server, the WsSocksServerInfo property ...
	The following example connects to an Internet chess site through an existing Winsock connection:
	procedure TForm1.ConnectBtnClick(Sender : TObject);
	begin
	ApdWinsockPort1.WsAddress := 'ics.onenet.net'
	ApdWinsockPort1.WsPort := 'telnet';
	ApdWinsockPort1.Open;
	end;

	procedure TForm1.ApdWinsockPort1WsConnect(Sender : TObject);
	begin
	Caption := 'Connected';
	end;

	Related examples
	EXCLIENT.DPR
	EXSERVER.DPR
	EXWZSEND.DPR
	EXWZRECV.DPR

	Logging in to an FTP Server
	This topic shows how to log in anonymously to an FTP server with the TApdFtpClient.
	FTP servers require successful login before they allow a file download.
	Required components
	TApdFtpClient

	Prerequisite topics
	“Dialing with RAS” on page�161.

	Related components
	None

	What to do
	The TApdFtpClient is designed to communicate through Winsock to an FTP server and it relies on an...
	To login to an FTP server you must first set the ServerAddress property to the domain name or IP ...
	Most FTP servers allow a user to login anonymously for restricted access to files at the server. ...
	The following example connects to the TurboPower FTP server through an existing Winsock connection:
	procedure TForm1.LoginBtnClick(Sender : TObject);
	begin
	ApdFtpClient1.ServerAddress := 'ftp.turbopower.com';
	ApdFtpClient1.UserName := 'anonymous';
	ApdFtpClient1.Password := 'somebody@somedomain.com';
	ApdFtpClient1.Login;
	end;

	procedure TForm1.ApdFtpClient1FtpStatus(Sender: TObject;
	StatusCode: TFtpStatusCode; Info: PChar);
	begin
	case StatusCode of
	scClose : Caption := 'Disconnected';
	scOpen : Caption := 'Connected';
	scLogin : Caption := 'Logged in';
	scLogout : Caption := 'Logged out';
	scFtpError : Caption := 'Cannot log in';
	scWsError : Caption := 'Winsock error';
	end;
	end;

	Related examples
	EXFTP1.DPR

	Changing the Current Working Directory of an FTP Server
	This topic shows how to change the working directory at an FTP server with the TApdFtpClient.
	Downloading several files from an FTP server where the files are located deep in a directory tree...
	Required components
	TApdFtpClient

	Prerequisite topics
	“Logging in to an FTP Server” on page�153.

	Related components
	None

	What to do
	To change the current working directory after logging in to an FTP server, simply call the Change...
	The following example changes the client’s current working directory on the TurboPower FTP server...
	procedure TForm1.AproUpdatesDirBtnClick(Sender : TObject);
	begin
	ApdFtpClient1.ChangeDir('pub/apro/updates');
	{CWD is now pub/apro/updates}
	end;

	procedure TForm1.ParentDirBtnClick(Sender : TObject);
	begin
	ApdFtpClient1.ChangeDir('..');
	{CWD is now pub/apro}
	end;

	procedure TForm1.ApdFtpClient1FtpStatus(Sender: TObject;
	StatusCode: TFtpStatusCode; Info: PChar);
	begin
	case StatusCode of
	scComplete : Caption := 'Directory changed';
	scFtpError : Caption := 'check remote path name';
	scWsError : Caption := 'Winsock error';
	end;
	end;

	Related examples
	EXFTP1.DPR

	Displaying the Contents of a Directory on an FTP Server
	This topic shows how to display a listing of the contents of a directory (all file details or fil...
	Before you can download a file from an FTP site, you may need to know what files are available an...
	Required components
	TApdFtpClient

	Prerequisite topics
	“Logging in to an FTP Server” on page�153.
	“Changing the Current Working Directory of an FTP Server” on page�143.

	Related components
	None

	What to do
	To obtain a listing of the contents of a remote directory call the ListDir method of the TApdFtpC...
	The following is a few lines of a full listing of the contents of the TurboPower FTP server’s PUB...
	09-02-99 10:14AM 71 00index.txt
	09-02-99 10:14AM <DIR> abbrevia
	03-02-99 11:47AM <DIR> analyst
	09-02-99 10:14AM <DIR> apro
	The following example obtains a full listing of the contents of the TurboPower FTP server’s PUB d...

	procedure TForm1.DirectoryBtnClick(Sender : TObject);
	begin
	ApdFtpClient1.ListDir('pub', True);
	end;

	procedure TForm1.ApdFtpClient1FtpStatus(
	Sender: TObject; StatusCode: TFtpStatusCode; Info: PChar);
	begin
	case StatusCode of
	scDataAvail : Memo1.Lines.Add(StrPas(Info));
	scFtpError : Caption := 'check remote path name';
	scWsError : Caption := 'Winsock error';
	end;
	end;

	Related examples
	EXFTP1.DPR

	Downloading a File from an FTP Server
	This topic shows how to download a file from an FTP server with the TApdFtpClient.
	Now that you can login, change the remote working directory and display its contents, it is time ...
	Required components
	TApdFtpClient

	Prerequisite topics
	“Logging in to an FTP Server” on page�153.
	“Displaying the contents of a directory on an FTP Server” on page�149.

	Related components
	None

	What to do
	To transfer a file from an FTP server you simply need to call the RetrieveFile method of the TApd...
	The following example copies the file FILES.ALL from the TurboPower FTP server’s PUB directory to...
	procedure TForm1.DownloadBtnClick(Sender : TObject);
	begin
	ApdFtpClient1.Retrieve(
	'pub/FILES.ALL', 'c:\temp\Files.all', rmReplace);
	end;

	procedure TForm1.ApdFtpClient1FtpStatus(
	Sender: TObject; StatusCode: TFtpStatusCode; Info: PChar);
	begin
	case StatusCode of
	scTransferOK : Caption := 'download complete';
	scProgress : Caption :=
	IntToStr(ApdFtpClient1.BytesTransferred) +
	'bytes transferred';
	scFtpError : Caption := 'check remote path name';
	scWsError : Caption := 'Winsock error';
	end;
	end;

	Related examples
	EXFTP1.DPR

	Paging with Winsock
	This topic describes how to send an alphanumeric page over an Internet (TCP/IP) connection.
	The TApdSNPPPager component provides the ability to send a page from your application. The page t...
	Required components
	TApdWinsockPort
	TApdSNPPPager

	Prerequisite topics
	“Setting up a Winsock Port” on page�120.

	Related components
	TApdTAPPager

	What to do
	TApdSNPPPager is designed to send a single page to a single recipient on a single paging server a...
	The following example shows obtaining the relevant paging parameters from some common VCL compone...
	To create this, first create a new form and drop the following components onto it:
	A TApdSNPPPager (naturally).
	Two TEdits (one for the Socket Address, one for the Pager ID).
	A TMemo (for the message).
	A TLabel (for the status display).
	A TButton (to make it all happen).

	Arrange these on the form in any way you find esthetic. Give the TButton some meaningful caption ...
	Next, double-click on the TButton and add the following code to the empty OnClick event handler g...
	procedure TForm1.Button1Click(Sender: TObject);
	begin
	ApdWinsockPort1.wsAddress := Edit1.Text;
	ApdWinsockPort1.wsPort := '1234';
	ApdSNPPPager1.PagerID := Edit2.Text;
	ApdSNPPPager1.Message := Memo1.Lines;
	ApdSNPPPager1.Send;
	end;
	Next, click on the TApdSNPPPager component, switch to the Object Inspector, click on the Events t...

	procedure TForm1.ApdSNPPPager1SNPPError(
	Sender : TObject; Code : Integer; Msg : String);
	begin
	Label1.Caption := Msg;
	end;
	Now, go back to the Object Inspector, click in the space next to the OnSNPPSuccess event, click o...

	Related examples
	EXSNPP.DPR

	Paging with Modems
	This topic describes how to send a simple alphanumeric page over a phone line and modem.
	The TApdTAPPager component provides the ability to send a page from your application. The page to...
	Required components
	TApdComPort
	TApdTAPPager

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TApdSNPPPager

	What to do
	TApdTAPPager is designed to send a single page to a single recipient on a single paging server at...
	The following example shows obtaining the relevant paging parameters from some common VCL compone...
	To create this, first, create a new form and drop the following components on to it:
	A TApdTAPPager (naturally)
	Two TEdits (one for the Phone Number, one for the Pager ID)
	A TMemo (for the message)
	A TLabel (for the status display)
	A TButton (to make it all happen).

	Arrange these on the form in any way you find esthetic. Give the TButton some meaningful caption ...
	Next, double-click on the TButton and add the following code to the empty OnClick event handler g...
	procedure TForm1.Button1Click(Sender: TObject);
	begin
	ApdTAPPager1.PhoneNumber := Edit1.Text;
	ApdTAPPager1.PagerID := Edit2.Text;
	ApdTAPPager1.Message := Memo1.Lines;
	ApdTAPPager1.Send;
	end;
	Next, click on the TApdTAPPager component, switch to the Object Inspector, click on the Events ta...

	procedure TForm1.ApdTAPPager1PageStatus(
	Sender : TObject; Event : TTapStatus);
	begin
	Label1.Caption := TAPStatusMsg(Event);
	end;

	Related examples
	EXPAGING.DPR
	EXTAP.DPR

	Sending an SMS Message
	This topic shows how to access cellular phones, or other GSM compatible devices, and how to send ...
	The TApdGSMPhone component provides the ability to send or receive a SMS message from your applic...
	Required components
	TApdComPort
	TApdGSMPhone

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TApdTAPPager
	TApdSNPPPager

	What to do
	Since the TApdGSMPhone component was designed for SMS messaging, the following example shows how ...
	To create this application, first, create a new form and drop a TApdComPort component, and a TApd...
	procedure TForm1.SendMessageClick(Sender: TObject);
	begin
	{ set the message properties }
	ApdGSMPhone1.SMSAddress := Edit1.Text;
	ApdGSMPhone1.SMSMessage := Edit2.Text;
	{ send the message }
	ApdGSMPhone1.SendMessage;
	end;
	When the message has been sent to the phone, the OnSessionFinish event will be generated. The Err...

	procedure TForm1.ApdGSMPhone1SessionFinish(Pager: TApdCustomGSMPhone; ErrorCode: Integer);
	begin
	ShowMessage('Message status: ' + ErrorMsg(ErrorCode));
	end;
	Compile and run your project. Enter a destination address in the first edit control and a short m...

	Related examples
	EXSMSPGR.DPR

	Managing SMS Messages
	This topic shows how to access a cellular phone message store using the TApdGSMPhone component.
	In addition to sending an SMS message, the TApdGSMPhone also provides access to the cell phone’s ...
	Required components
	TApdComPort
	TApdGSMPhone

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Sending an SMS Message” on page�134.

	Related components
	TApdTAPPager
	TApdSNPPPager

	What to do
	The TApdGSMPhone component provides the MessageStore property, which can be synchronized with the...
	The MessageStore property is a TStringList. After synchronization, each Strings item in the Messa...
	TApdSMSMessage = class(TObject)
	public
	property Address : string;
	property Message : string;
	property MessageIndex : Integer;
	property Status : TApdSMSStatus;
	property TimeStamp : TDateTime;
	property TimeStampStr : string;
	end;
	After synchronization, the MessageStore property can be used to manage the phone’s internal messa...
	Create a new project and drop a TApdComPort and TApdGSMPhone component on the form. Change the Co...

	procedure TForm1.ConnectClick(Sender : TObject);
	begin
	ApdGSMPhone1.Connect;
	end;
	The phone will be initialized and the phone’s internal message store will be retrieved. When this...

	procedure TForm1.ApdGSMPhone1GSMComplete(Pager: TApdCustomGSMPhone; State: TApdGSMStates; ErrorCo...
	begin
	if State = gsListAll then
	ListBox1.Items.AddStrings(Pager.MessageStore);
	end;
	In this example we will be displaying the details of the message when the list box is double clic...

	procedure TForm1.ListBox1DblClick(Sender: TObject);
	var
	I : Integer;
	Msg : TApdSMSMessage;
	begin
	if ListBox1.ItemIndex > -1 then begin
	I := ListBox1.ItemIndex;
	Msg := ApdGSMPhone1.MessageStore.Messages[I];
	Edit1.Text := Msg.Address;
	Edit2.Text := Msg.TimeStampStr;
	Edit3.Text := ApdGSMPhone1.StatusToStr(Msg.Status);
	MemoMessage.Text := Msg.Message;
	end;
	end;
	You can just as easily delete messages from the phone, create the OnKeyDown event handler for the...

	procedure TForm1.ListBox1KeyDown(Sender: TObject; var Key: Word; Shift: TShiftState);
	begin
	if Key = VK_DELETE then begin
	if ListBox1.ItemIndex > -1 then
	ApdGSMPhone1.MessageStore.Delete(ListBox1.ItemIndex);
	end;
	You can also use the TEdit components that were previously added to add a new message to the mess...

	procedure TForm1.AddMessageClick(Sender: TObject);
	begin
	{ Edit1 is the Address TEdit, Memo1 is the message text }
	ApdGSMPhone1.WriteToMemory(Edit1.Text, Memo1.Text);
	end;
	To send an unsent message from the MessageStore, drop another TButton component on the form, chan...

	procedure TForm1.Button1Click(Sender: TObject);
	var
	Msg : TApdSMSMessage;
	I : Integer;
	begin
	if ListBox1.ItemIndex > -1 then begin
	I := ListBox1.ItemIndex;
	Msg := ApdGSMPhone1.MessageStore.Messages[I];
	{ only send messages that have not been sent }
	if Msg.Status = ssUnsent then
	ApdGSMPhone1.SendFromMemory(ListBox1.ItemIndex);
	end;
	end;

	Related examples
	EXSMSPGR.DPR
	EXGSM.DPR

	Converting a Document to Fax Format
	This topic shows how to convert an existing ASCII text, BMP, PCX, DCX or TIFF document to a faxab...
	When faxing a document, the first step is converting it into a faxable format, something that the...
	Required components
	TApdFaxConverter

	Prerequisite topics
	None

	Related components
	TApdFaxUnpacker
	TApdSendFax

	What to do
	If you want to fax an existing document, it must be in an APF, ASCII Text, BMP, PCX, DCX, or TIFF...
	The following example allows the user to select a text file and converts it to the APF format:
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	OpenDialog1.Filter := 'Text files (*.TXT)|*.TXT';
	if OpenDialog1.Execute then begin
	ApdFaxConverter1.DocumentFile := OpenDialog1.FileName;
	ApdFaxConverter1.InputDocumentType := idText;
	ApdFaxConverter1.ConvertToFile;
	end;
	end;

	Related examples
	CVT2FAX.DPR

	Configuring a Device for Faxing
	This topic shows how to select and configure a fax modem for faxing.
	The fax protocol requires specific settings for faxes to be transmitted successfully. The TApdCom...
	Required components
	TApdComPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Selecting and Configuring a Modem” on page�85.

	Related components
	TApdTapiDevice

	What to do
	With the TApdTapiDevice component, call the ConfigAndOpen method. Call the appropriate faxing met...
	procedure TForm1.ConfigAndSendBtnClick(Sender : TObject);
	begin
	ApdTapiDevice1.ConfigAndOpen;
	end;

	procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
	begin
	ApdSendFax1.StartTransmit;
	end;

	Related examples
	SENDFAX.DPR

	Sending Faxes to One Recipient
	This topic shows how to send a fax to a single recipient and to send several faxes to multiple re...
	The TApdSendFax component provides the ability to send a fax in your application. The fax to be s...
	Required components
	TApdComPort
	TApdSendFax

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Converting a Document to Fax Format” on page�140.
	“Configuring a Device for Faxing” on page�142.

	Related components
	TApdFaxStatus
	TApdFaxLog
	TApdFaxConverter

	What to do
	The fax document to be sent must be either an ASCII text file with or without replaceable tags or...
	Once you have an APF file on disk, and know where it is, you can fax it. The component that handl...
	According to FCC regulations, all faxes sent in the United States must have the date/time of tran...
	Table 5.5: Replaceable tags
	Following is an example of a replaceable tagged HeaderLine that has the date/time of transmission...
	ApdSendFax1.HeaderLine := 'Date/Time : $D $T, $I, $F';

	The TApdSendFax component can also send a cover page as the first page of the fax or as the fax i...
	A send-fax call can send only a single APF fax file and cover page. To send several APF files you...
	To send the fax, call the TApdSendFax.StartTransmit method. The faxmodem is initialized for faxin...
	Once the fax session is complete, either through normal termination or due to an unrecoverable er...
	The following example gets a file name from a TOpenDialog component and then sends the fax. This ...

	procedure TForm1.SelectSendClick(Sender : TObject);
	begin
	OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
	OpenDialog1.Options := [ofAllowMultiSelect];
	if OpenDialog1.Execute then begin
	ApdSendFax1.FaxFileList.Assign(OpenDialog1.Files);
	ApdSendFax1.StartTransmit;
	end;
	end;

	procedure TForm1.ApdSendFax1FaxFinish(
	CP : TObject; ErrorCode : Integer);
	begin
	ShowMessage(ErrorMsg(ErrorCode));
	end;
	In addition to using the TApdSendFax component to place a dedicated fax call, the component can u...

	procedure TForm1.SendFaxNowBtnClick(Sender : TObject);
	begin
	ApdSendFax1.FaxFile := 'REPORT.APF';
	ApdSendFax1.StartManualTransmit;
	end;

	Related examples
	None

	Sending Faxes to Different Recipients
	This topic shows how to send a single fax to several recipients or several faxes to different rec...
	Some fax-enabled applications allow scheduling several faxes to one or more recipients or broadca...
	Required components
	TApdComPort
	TApdSendFax

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Configuring a Device for Faxing” on page�142.
	“Sending Faxes to One Recipient” on page�143.

	Related components
	TApdFaxStatus
	TApdFaxLog

	What to do
	The task of sending a single fax to a single recipient is easily expanded to sending the same fax...
	The OnFaxNext event fires before each fax call is placed and ignores the FaxFile, FaxFileList, Ph...
	procedure TForm1.PrepareFaxesToBroadcast;
	begin
	OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
	OpenDialog1.Options := [ofAllowMultiSelect];
	if OpenDialog1.Execute then begin
	ApdSendFax1.FaxFileList.Assign(OpenDialog1.Files);
	ApdSendFax1.ConcatFaxes('C:\FAXES\OUTFAX.APF');
	end;
	end;
	Since all fax calls are placed in the same fax session, the OnFaxFinish event fires after the las...
	The following example iterates through a database, sends all specified faxes, and flags the datab...

	procedure TForm1.StartSendingBtnClick(Sender : TObject);
	begin
	ApdSendFax1.HeaderSender := 'Joe Cool';
	ApdSendFax1.StationID := '719 260 7151';
	Table1.First;
	if not Table1.EOF then
	ApdSendFax1.StartTransmit;
	end;

	procedure TForm1.ApdSendFax1FaxNext(
	CP : TObject; var APhoneNumber, AFaxFile,
	ACoverFile : TPassString);
	begin
	Table1.Next;
	if not Table1.EOF then begin
	ApdSendFax1.HeaderRecipient :=
	Table1.FieldByName('RecipientName').AsString;
	ApdSendFax1.HeaderTitle :=
	Table1.FieldByName('Title').AsString;
	APhoneNumber := Table1.FieldByName('PhoneNumber').AsString;
	AFaxFile := Table1.FieldByName('APFName').AsString;
	ACoverFile := ApdSendFax1.CoverFile;
	end;
	end;

	procedure TForm1.ApdSendFax1FaxLog(
	CP : TObject; LogCode : TFaxLogCode);
	begin
	case LogCode of
	lfaxTransmitStart : Table1.FieldByName(
	'Status').AsString := 'Sending';
	lfaxTransmitOK : Table1.FieldByName(
	'Status').AsString := 'Sent OK';
	lfaxTransmitFail : Table1.FieldByName(
	'Status').AsString := 'Failed';
	end;
	end;

	Related examples
	SENDFAX.DPR

	Receiving Faxes
	This topic shows how to receive a single fax or multiple faxes.
	Receiving documents over telephone lines is a time-saving process that has nearly revolutionized ...
	Required components
	TApdComPort
	TApdReceiveFax

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Configuring a Device for Faxing” on page�142.

	Related components
	TApdFaxStatus
	TApdFaxLog

	What to do
	The TApdReceiveFax component is designed to receive faxes manually or automatically from a single...
	The TApdReceiveFax.StationID property defines the identification string that is sent to the sendi...
	When the fax is being received, the fax page data is saved to an Async Professional Fax (APF) fil...
	1. Set the FaxNameMode property to fnCount. This uses a sequential numbering system to name the r...
	2. Set the FaxNameMode property to fnMonthDay. This uses the month and day the fax is received al...
	3. Create your own naming scheme with the OnFaxName event. You can also specify the directory/fol...
	Now that you know where the received fax will be stored and what they will be named, you can star...
	The OnFaxLog event fires when the incoming call is verified to be a fax call and when the fax cal...
	The following example opens the port, saves the received faxes in a specific directory, uses the ...

	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdComPort1.Open := True;
	ApdReceiveFax1.DestinationDir := 'C:\RECVFAX';
	ApdReceiveFax1.FaxNameMode := fnCount;
	ApdReceiveFax1.StationID := '719 260 7151';
	ApdReceiveFax1.StartReceive;
	end;

	procedure TForm1.ApdReceiveFax1FaxFinish(
	CP : TObject; ErrorCode : Integer);
	begin
	ShowMessage('Fax received : ' + ErrorMsg(ErrorCode));
	end;

	procedure TForm1.ApdReceiveFax1FaxLog(
	CP : TObject; LogCode : TFaxLogCode);
	begin
	case LogCode of
	lfaxReceiveStart : Memo1.Lines.Add(
	'Receiving ' + ApdReceiveFax1.FaxFile);
	lfaxReceiveOK : Memo1.Lines.Add(
	ApdReceiveFax1.FaxFile + ' OK');
	lfaxReceiveFail : Memo1.Lines.Add(
	ApdReceiveFax1.FaxFile + ' failed');
	end;
	end;
	To begin a manual fax reception, use the TApdReceiveFax.StartManualReceive method. This method ha...

	procedure TForm1.ReceiveFaxNowBtnClick(Sender : TObject);
	begin
	ApdReceiveFax1.StartManualReceive(False);
	end;

	Related examples
	RCVFAX.DPR

	Converting a Fax to Another Format
	This topic shows how to convert an existing fax file into a BMP, PCX, DCX or TIFF document.
	The APF format is good for sending and receiving faxes, but what about doing something else with ...
	Required components
	TApdFaxUnpacker

	Prerequisite topics
	None

	Related components
	TApdFaxConverter
	TApdReceiveFax

	What to do
	The first step in converting an APF file to another file type is to have an APF file to convert. ...
	The following example converts a user-selected APF file to a bitmap file and then converts the sa...
	procedure TForm1.ConvertBtnClick(Sender : TObject);
	begin
	OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
	if OpenDialog1.Execute then begin
	ApdFaxUnpacker1.InFileName := OpenDialog1.FileName;
	ApdFaxUnpacker1.OutFileName := 'C:\FAXIMAGE.BMP';
	ApdFaxUnpacker1.UnpackFileToBitmap;
	ApdFaxUnpacker1.OutFileName := 'C:\FAXIMAGE.TIF';
	ApdFaxUnpacker1.UnpackFileToTiff;
	end;
	end;
	Alternatively, you can use the APF TPicture registration to handle the fax conversion. To use thi...

	procedure TForm1.Button1Click(Sender: TObject);
	begin
	if OpenPictureDialog1.Execute then
	Image1.Picture.LoadFromFile (OpenPictureDialog1.FileName);
	end;
	This code will allow you to load an APF file and view it on the TImage component.
	To save the fax image in a different format, drop a SavePictureDialog and another button on the f...

	procedure TForm1.Button2Click(Sender: TObject);
	begin
	if SavePictureDialog1.Execute then
	Image1.Picture.SaveToFile (SavePictureDialog1.FileName);
	end;

	Related examples
	None

	Viewing a Fax
	This topic shows how to view an APF file.
	Once you convert a document to the Async Professional Fax file format (APF) or receive a fax you ...
	Required components
	TApdFaxViewer

	Prerequisite topics
	None

	Related components
	TApdFaxConverter
	TApdReceiveFax

	What to do
	The TApdFaxViewer component is designed to display APF files, to process keystrokes to navigate t...
	Navigation through the fax is achieved by keystrokes from the user or via code. Use the FirstPage...
	procedure TForm1.ViewAndCopyLastPage;
	begin
	OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
	if OpenDialog1.Execute then begin
	ApdFaxViewer1.FileName := OpenDialog1.FileName;
	ApdFaxViewer1.LastPage;
	ApdFaxViewer1.SelectImage;
	ApdFaxViewer1.CopyToClipboard;
	end;
	end;

	Related examples
	VIEWFAX.DPR

	Printing a Fax
	This topic shows how to print an APF file.
	The ability to print a fax file is almost a necessity for most fax applications. The TApdFaxPrint...
	Required components
	TApdFaxPrinter

	Prerequisite topics
	None

	Related components
	TApdFaxPrinterStatus
	TApdFaxPrinterLog
	TApdFaxConverter
	TApdFaxViewer
	TApdReceiveFax

	What to do
	To print a fax, drop a TApdFaxPrinter component on the form, specify the file name in the TApdFax...
	The TApdFaxPrinterStatus component displays a dialog showing the progress of the print job. The T...
	The following example selects an APF file to print and allows the user to select which printer is...
	procedure TForm1.LoadAndPrintBtnClick(Sender : TObject);
	begin
	OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
	if OpenDialog1.Execute then begin
	ApdFaxPrinter1.FileName := OpenDialog1.FileName;
	ApdFaxPrinter1.PrintSetup;
	ApdFaxPrinter1.PrintFax;
	end;

	Related examples
	None

	Installing the Fax Printer Driver Programmatically
	This topic shows how to programmatically install the Async Professional fax printer driver.
	The Async Professional fax printer driver operates the same as most other Windows printer drivers...
	Required components
	Async Professional Fax Printer Driver

	Prerequisite topics
	None

	Related components
	None

	What to do
	There are a two techniques that can be used to install a printer driver, manually and programmati...
	The grunt work of installing the fax printer driver is done in the PDRVINST.PAS unit. This unit h...
	The following example determines if the application is running under Windows NT, calls the approp...
	procedure TForm1.InstallFaxPrinterDriver;
	begin
	if IsWinNT then
	InstallDriver32('')
	else InstallDriver('APFGEN.DRV');
	case DrvInstallError of
	ecOK : ShowMessage('Printer driver installed successfully');
	ecDrvDriverNotFound : ShowMessage(
	'Printer driver not found');
	else ShowMessage('Other installation error : ' +
	IntToStr(DrvInstallError));
	end;
	end;

	Related examples
	PINST.DPR

	Intercepting a Fax Printer Print Job
	This topic shows how to detect a print job sent to the Async Professional fax printer driver.
	The Async Professional fax printer driver converts Windows print jobs from any Windows applicatio...
	Required components
	TApdFaxDriverInterface

	Prerequisite topics
	“Installing the Fax Printer Driver Programmatically” on page�159.

	Related components
	TApdSendFax
	TApdFaxUnpacker

	What to do
	The TApdFaxDriverInterface component receives messages from the Async Professional fax printer dr...
	To intercept the print job callbacks from the Async Professional fax printer driver, a TApdFaxDri...
	The following example intercepts the fax printer driver print jobs, saves the resulting APF in a ...
	procedure TForm1.ApdFaxDriverInterface1DocStart(
	Sender : TObject);
	begin
	ApdFaxDriverInterface1.FileName := 'C:\FAX\SENDME.APF';
	end;

	procedure TForm1.ApdFaxDriverInterface1DocEnd(Sender : TObject);
	begin
	ApdSendFax1.FaxFile := ApdFaxDriverInterface1.FileName;
	ApdSendFax1.PhoneNumber := '260-7151';
	ApdSendFax1.StartTransmit;
	end;

	Related examples
	FAXMON.DPR
	FXCLIENT.DPR

	Faxing a Document from your Application
	This topic shows how to fax a document from within your application using the fax printer driver.
	If you are creating documents to fax from within your application, there are two techniques you c...
	Required components
	TApdComPort
	TApdFaxDriverInterface
	TApdSendFax

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Configuring a Device for Faxing” on page�142.
	“Sending Faxes to One Recipient” on page�143.
	“Intercepting a Fax Printer Print Job” on page�161.

	Related components
	TApdFaxStatus
	TApdFaxLog

	What to do
	In order to fax a document using the Async Professional fax components, the document must be in t...
	The process of converting and faxing a document in a format supported by the TApdFaxConverter com...
	The following example saves the contents of a TMemo component, converts the saved document to the...
	procedure TForm1.ConvertAndFaxBtnClick(Sender : TObject);
	begin
	Memo1.Lines.SaveToFile('C:\OUTFAX.TXT');
	ApdFaxConverter1.DocumentFile := 'C:\OUTFAX.TXT';
	ApdFaxConverter1.InputDocumentType := idText;
	ApdFaxConverter1.OutFileName := 'C:\OUTFAX.APF';
	ApdFaxConverter1.ConvertToFile;
	ApdSendFax1.FaxFile := ApdFaxConverter1.OutFileName;
	ApdSendFax1.PhoneNumber := '260 7151';
	ApdSendFax1.StartTransmit;
	end;
	If you are printing from your application to the Async Professional fax printer driver, you must ...
	The following example shows how to find the Async Professional fax printer driver and correctly s...

	with Printer do begin
	I := PrinterIndex;
	P := Printers.IndexOf('Print to Fax on PRINTFAX:');
	if P = -1 then
	P := Printers.IndexOf('APF Fax Printer');
	if P = -1 then begin
	ShowMessage(
	'The TurboPower Fax Printer was not found'#13#10+
	'The print job will not be submitted');
	Exit;
	end else begin
	PrinterIndex := P;
	GetPrinter(Device, Name, Port, DevMode);
	SetPrinter(Device, Name, Port, 0);
	end;
	Once the printer is correctly selected and configured, print the document to the Async Profession...

	Related examples
	None

	Creating a Fax Client
	This topic shows how to create a functional TApdFaxClient component.
	The fax server components in Async Professional need fax jobs to process; otherwise, they will ju...
	Required components
	TApdFaxClient

	Prerequisite topics
	“Overview: Using the Fax Server Components” on page�50.
	“Intercepting a Fax Printer Print Job” on page�161.

	Related components
	TApdFaxServer
	TApdFaxServerManager
	TApdFaxDriverInterface

	What to do
	The TApdFaxClient component creates fax jobs. The properties of the TApdFaxClient component are u...
	For the sake of clarity, we’ll do a simple single-recipient fax job each time a print job is sent...
	The TApdFaxDriverInterface.OnDocEnd event will fire when the print job is complete, so we’ll do s...
	procedure TForm1.ApdFaxDriverInterface1DocEnd(Sender: TObject);
	begin
	edtRecipient.Text := '';
	edtPhone.Text := '';
	ApdFaxClient1.CoverFileName := '';
	ApdFaxClient1.FaxFileName := ApdFaxDriverInterface1.FileName;
	ApdFaxClient1.HeaderLine := '$S sent by $F to $R on $D $T';
	ApdFaxClient1.HeaderTitle := ApdFaxDriverInterface1.DocName;
	ApdFaxClient1.JobFileName := 'C:\Faxes\' + NextJobFileName;
	ApdFaxClient1.JobName := ApdFaxDriverInterface1.DocName;
	ApdFaxClient1.ScheduleDateTime := Now;
	ApdFaxClient1.Sender := 'Me';
	end;
	Everything is set up now, except for the recipient’s name and phone number. Use the OK button’s O...

	procedure TForm1.Button1Click(Sender: TObject);
	begin
	ApdFaxClient1.HeaderRecipient := edtRecipient.Text;
	ApdFaxClient1.PhoneNumber := edtPhone.Text;
	ApdFaxClient1.MakeFaxJob;
	end;
	That’s all there is to it, you’ve just created a fax client.
	There are a few things about this code that could use a bit more explanation. The HeaderLine is u...
	The ApdFaxClient.JobFileName property assignment uses a NextJobFileName function, which is not de...
	You could expand upon this example by letting the user enter several recipients. To add another r...

	Related examples
	FXCLIENT.DPR
	FXSRVR.DPR

	Setting Up a Fax Server
	This topic shows how to set up a TApdFaxServer component and TApdFaxServerManager component.
	Fax servers must be able to receive, send, and schedule faxes. The Async Professional fax server ...
	Required components
	TApdComPort
	TApdFaxServer
	TApdFaxServerManager

	Prerequisite topics
	“Overview: Using the Fax Server Components” on page�50.
	“Creating a Fax Client” on page�166.

	Related components
	TApdFaxClient
	TApdSendFax
	TApdReceiveFax

	What to do
	Fax documents used with the Async Professional fax server components are in the Async Professiona...
	The TApdFaxServer component connects to the faxmodem through the TApdComPort (or optionally throu...
	To enable monitoring for incoming faxes, set the TApdFaxServer.Monitoring property to True. The T...
	Scheduling and sending faxes is a bit more involved, and requires a TApdFaxServerManager. The TAp...
	Create a new project and drop a TApdComPort component on the form. Set the ComNumber property as ...

	Related examples
	FXCLIENT.DPR
	FXSRVR.DPR

	Sending and Receiving Faxes with TApdFaxServer
	This topic shows how to configure the Async Professional Fax Server and how to use it for receivi...
	The TApdFaxServer component is the faxing engine for the Fax Server Components, and handles the p...
	Required components
	TApdFaxServer
	TApdFaxServerManager

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Selecting and Configuring a Modem” on page�85.

	Related components
	TApdAbstractFax
	TApdComPort
	TApdReceiveFax
	TApdSendFax

	What to do
	Configuration for faxing
	The TApdFaxServer component is similar to TApdAbstractFax in that it accesses the physical faxmod...
	ApdComPort.DataBits := 8;
	ApdComPort.StopBits := 1;
	ApdComPort.Parity := pNone;
	ApdComPort.Baud := 19200;
	ApdComPort.InSize := 8192;
	ApdComPort.OutSize := 8192;
	ApdComPort.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];
	The faxmodem will be configured with the same configuration string as the TApdAbstractFax. If you...

	Receiving faxes
	The ApdFaxServer component receives faxes by monitoring for incoming calls. To begin monitoring, ...

	Sending faxes
	The ApdFaxServer component sends faxes by querying an ApdFaxServerManager component for fax jobs....

	Related examples
	FXSRVR.DPR

	Detecting DTMF
	This topic shows how to detect Dual Tone Modulation Frequencies (DTMF).
	DTMF tones are the tones that are generated each time a phone number button is pressed. These ton...
	Required components
	TApdComPort
	TApdTapiDevice

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Selecting and Configuring a Modem” on page�85.

	Related components
	None

	What to do
	The DTMF detection requires a voice modem and a voice-capable TAPI service provider. If your setu...
	The EnableVoice property of the TApdTapiDevice component determines whether the modem makes a con...
	The following example answers incoming phone calls in voice mode and display the keys that the ca...
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdTapiDevice1.SelectDevice;
	ApdTapiDevice1.EnableVoice := True;
	ApdTapiDevice1.AutoAnswer;
	end;

	procedure TForm1.ApdTapiDevice1TapiDTMF(
	CP : TObject; Digit : Char; ErrorCode : Integer);
	begin
	Edit1.Text := Edit1.Text + Digit;
	end;

	Related examples
	EXVOICE.DPR

	Recording a WAVE File
	This topic shows how to record a WAVE file through a TAPI device.
	The ability to record voice messages is a vital feature in any voice mail application, and is a g...
	Required components
	TApdComPort
	TApdTapiDevice

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Selecting and Configuring a Modem” on page�85.

	Related components
	None

	What to do
	WAVE file recording requires a voice modem and a voice-capable TAPI service provider. If your set...
	The EnableVoice property of the TApdTapiDevice component determines whether or not the voice exte...
	The following example records a message from a voice connection in response to a button click eve...
	procedure TForm1.RecordMessageBtnClick(Sender : TObject);
	begin
	ApdTapiDevice1.StartWaveRecord;
	end;

	procedure TForm1.ApdTapiDevice1TapiWaveNotify(CP : TObject;
	Msg : TWaveMessage);
	begin
	if Msg = waDataReady then
	ApdTapiDevice1.SaveWaveFile('F:\RECORD.WAV', True);
	end;

	Related examples
	EXRECORD.DPR

	Playing WAVE Files
	This topic shows how to play a WAVE file over a TAPI device.
	An automated voice system requires voice prompts to be sent to the other side of the connection t...
	Required components
	TApdComPort
	TApdTapiDevice

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Selecting and Configuring a Modem” on page�85.

	Related components
	None

	What to do
	Playing a WAVE file through a TAPI device requires a voice modem with a valid wave output driver,...
	The EnableVoice property of the TApdTapiDevice component determines whether or not the voice exte...
	The TApdTapiDevice.PlayWaveFile method starts playing the wave file specified in the FileName par...
	The following example plays a wave file when a connection is made:
	procedure TForm1.ApdTapiDevice1TapiConnect(Sender : TObject);
	begin
	ApdTapiDevice1.PlayWaveFile('GREETING.WAV');
	end;

	Related examples
	EXVOICE.DPR

	Installing SAPI4
	This topic shows how to install SAPI 4.
	The TApdSapiEngine component utilizes the services of SAPI (Speech API) version 4. Microsoft has ...
	Prerequisite topics
	None

	Required components
	None

	What to do
	The TApdSapiEngine component utilizes the services of SAPI 4 (Speech API). SAPI 4 must be install...
	Once the SAPI 4 API (SPCHAPI.ZIP) has been downloaded, it can be installed through the following ...
	Have your setup program install SpchAPI.exe into a temporary directory.
	Run SpchAPI.exe. It is a self-extracting executable that will install all the necessary files and...
	Delete the temporary copy of SpchAPI.exe after it has been installed.
	Your setup program does not need to uninstall the Microsoft Speech API components since it is a s...

	SpchAPI.exe has several options to somewhat customize the install process.
	The SpchAPI.exe installer is provided by Microsoft, and contains the speech engines. Microsoft al...

	Related examples
	None

	Setting up Speech Synthesis
	This topic shows how to set up speech synthesis.
	The TApdSapiEngine component provides speech synthesis and recognition capabilities. The Speak me...
	Prerequisite topics
	“Installing SAPI4” on page�180.

	Required components
	TApdSapiEngine

	What to do
	The TApdSapiEngine component is designed to provide support for speech synthesis and recognition....
	procedure TForm1.Button1Click(Sender: TObject);
	begin
	ApdSapiEngine1.Speak ('All your base are belong to us!');
	end;

	Related examples
	EXSAPI.DPR

	Selecting Speech Synthesis Voices
	This topic shows how to select voices for speech synthesis.
	The TApdSapiEngine component provides speech synthesis and recognition capabilities. Most speech ...
	Required components
	TApdSapiEngine

	Prerequisite topics
	“Installing SAPI4” on page�180.
	“Setting up Speech Synthesis” on page�182.

	What to do
	Drop a TApdSapiEngine component of the form. The SSVoices property of the TApdSapiEngine componen...
	The following example will list all the speech synthesis voices to a TMemo component:
	procedure TForm1.Button1Click (Sender : TObject);
	var
	i : Integer;

	begin
	Memo1.Lines.Clear;
	for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
	Memo1.Lines.Add (ApdSapiEngine1.SSVoices[i]);
	end;
	To select a voice, set the CurrentVoice property of the Voices class to the index of the voice yo...
	ApdSapiEngine1.SSVoices.CurrentVoice := 2;

	It is often necessary to select a speech synthesis engine that has specific features. Most common...
	The following code will list only those engines that are optimized for PC use:

	procedure TForm1.Button1Click (Sender : TObject);
	var
	i : Integer;
	begin
	for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
	if tfPCOptimized in
	ApdSapiEngine1.SSVoices.Features[i] then
	Memo1.Lines.Add (ApdSapiEngine1.SSVoices[i]);
	end;
	A simple modification to the code will list only those engines that optimized for telephony usage:

	procedure TForm1.Button1Click (Sender : TObject);
	var
	i : Integer;
	begin
	for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
	if tfPhoneOptimized in
	ApdSapiEngine1.SSVoices.Features[i] then
	Memo1.Lines.Add (ApdSapiEngine1.SSVoices[i]);
	end;

	Related examples
	EXSAPI.DPR

	Setting up Speech Recognition
	This topic shows how to set up speech recognition.
	The TApdSapiEngine component provides speech synthesis and recognition capabilities. The Listen m...
	Prerequisite topics
	“Installing SAPI4” on page�180.
	“Setting up Speech Synthesis” on page�182.

	Required components
	TApdSapiEngine

	What to do
	Drop a TApdSapiEngine component on the form. Before speech recognition can occur, a vocabulary mu...
	Determine which words you want to recognize first. If you are requesting numeric input, add “one”...
	The following example listens for “red”, “green”, or “blue.” If one of those words are spoken, it...
	procedure TForm1.Button1Click (Sender : TObject);
	begin
	{ Set up the vocabulary }
	ApdSapiEngine1.WordList.Clear;
	ApdSapiEngine1.WordList.Add ('red');
	ApdSapiEngine1.WordList.Add ('blue');
	ApdSapiEngine1.WordList.Add ('green');
	{ Listen }
	ApdSapiEngine1.Listen;
	end;

	procedure TForm1.ApdSapiEngine1PhraseFinish (
	Sender : TObject; const Phrase : WideString);
	begin
	if Phrase <> '' then
	Memo1.Lines.Add (Phrase);
	end;
	To stop speech recognition, call the StopListening method of the TApdSapiEngine component.

	Related examples
	EXSAPI.DPR

	Selecting a Speech Recognition Engine
	This topic shows how to select an engine for speech recognition.
	The TApdSapiEngine component provides speech synthesis and recognition capabilities. Frequently m...
	Required components
	TApdSapiEngine

	Prerequisite topics
	“Installing SAPI4” on page�180.
	“Setting up Speech Recognition” on page�185.

	What to do
	Drop a TApdSapiEngine component of the form. The SREngines property of the TApdSapiEngine compone...
	The following example will list all the speech recognition engines in a TMemo component:
	procedure TForm1.Button1Click (Sender : TObject);
	var
	i : Integer;
	begin
	Memo1.Lines.Clear;
	for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
	Memo1.Lines.Add (ApdSapiEngine1.SREngines[i]);
	end;
	To select an engine, set the CurrentEngine property of the SREngines class to the index of the en...
	ApdSapiEngine1.SSVoices.CurrentEngine := 2;

	It is often necessary to select a speech recognition engine that has specific features. Most comm...
	The following code will list only those engines that are optimized for PC use:

	procedure TForm1.Button1Click (Sender : TObject);
	var
	i : Integer;
	begin
	for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
	if sfPCOptimized in
	ApdSapiEngine1.SREngines.Features[i] then
	Memo1.Lines.Add (ApdSapiEngine1.SREngines[i]);
	end;
	A simple modification to the code will list those engines that optimized for telephony usage:

	procedure TForm1.Button1Click (Sender : TObject);
	var
	i : Integer;
	begin
	for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
	if sfPhoneOptimized in
	ApdSapiEngine1.SREngines.Features[i] then
	Memo1.Lines.Add (ApdSapiEngine1.SREngines[i]);
	end;

	Related examples
	EXSAPI.DPR

	Using the Speech Recognition VU Meter
	This topic shows how to use the speech recognition VU meter to provide feedback to the user.
	The speech recognition functions TApdSapiEngine provide an OnVUMeter event that can be used to pr...
	Required components
	TApdSapiEngine

	Prerequisite topics
	“Installing SAPI4” on page�180.
	“Setting up Speech Recognition” on page�185.

	What to do
	Drop a TApdSapiEngine component on the form. The OnVUMeter event will fire periodically when the ...
	The following example will expand upon the example developed in “Setting up Speech Recognition”. ...
	procedure TForm1.Button1Click (Sender : TObject);
	begin
	{ Set up the vocabulary }
	ApdSapiEngine1.WordList.Clear;
	ApdSapiEngine1.WordList.Add ('red');
	ApdSapiEngine1.WordList.Add ('blue');
	ApdSapiEngine1.WordList.Add ('green');
	{ Listen }
	ApdSapiEngine1.Listen;
	end;

	procedure TForm1.ApdSapiEngine1PhraseFinish (Sender : TObject;
	const Phrase : WideString);
	begin
	if Phrase <> '' then
	Memo1.Lines.Add (Phrase);
	end;

	procedure TForm1.ApdSapiEngine1VUMeter (Sender : TObject;
	Level : Integer);
	begin
	ProgressBar1.Position := Level;
	end;

	Related examples
	EXSAPI.DPR

	Using Speech Synthesis and Recognition Over a Phone
	This topic shows how to provide speech capabilities over a voice telephony connection.
	Speech capabilities over a voice connection are provided by a specialized TAPI device, the TApdSa...
	Required components
	TApdComPort
	TApdSapiEngine
	TApdSapiPhone

	Prerequisite topics
	“Installing SAPI4” on page�180.
	“Configuring a TAPI Device” on page�91.
	“Setting up Speech Synthesis” on page�182.
	“Selecting Speech Synthesis Voices” on page�183.
	“Setting up Speech Recognition” on page�185.
	“Selecting a Speech Recognition Engine” on page�187.

	What to do
	The TApdSapiPhone device handles the phone connection exactly like a TApdTapiDevice. When a conne...
	The following example will place the TApdSapiPhone in auto-answer mode. When a call is made to it...
	It is important to make sure that the speech synthesis and recognition engines that you are using...
	procedure TForm1.Button1Click(Sender: TObject);
	procedure SetTelephoneSS;
	{ Set the speech synthesis engine to the first telephone
	optimized voice. This assumes that at least one telephone
	optimized voice is installed. }
	var
	i : Integer;
	begin
	for i := 0 to ApdSapiEngine1.SSVoices.Count - 1 do
	if tfPhoneOptimized in
	ApdSapiEngine1.SSVoices.Features[i] then begin
	ApdSapiEngine1.SSVoices.CurrentVoice := i;
	Exit;
	end;
	end;

	procedure SetTelephoneSR;
	{ Set the speech recognition engine to the first telephone
	optimzied engine. This assumes that at least one
	telephone optimized engine is installed. }
	var
	i : Integer;
	begin
	for i := 0 to ApdSapiEngine1.SREngines.Count - 1 do
	if sfPhoneOptimized in
	ApdSapiEngine1.SREngines.Features[i] then begin
	ApdSapiEngine1.SREngines.CurrentEngine := i;
	Exit;
	end;
	end;

	begin
	{ Make sure that telephone optimized voices are in use }
	SetTelephoneSS;
	SetTelephoneSR;
	{ Connect the phone to a SAPI engine }
	ApdSapiPhone1.SapiEngine := ApdSapiEngine1;
	{ Configure the phone and answer }
	ApdSapiPhone1.AnswerOnRing := 2;
	ApdSapiPhone1.AutoAnswer;
	end;

	procedure TForm1.ApdSapiPhone1TapiConnect(Sender: TObject);
	begin
	ApdSapiEngine1.Speak ('All your base are belong to us!');
	ApdSapiEngine1.WaitUntilDoneSpeaking;
	ApdSapiPhone1.CancelCall;
	end;
	Adding speech recognition to this is easy. Make a call to ApdSapiPhone1.Listen. The OnPhraseFinis...
	A word of caution, most telephony connections are half duplex. You cannot have the SAPI engine sp...

	Related examples
	EXSAPIPH.DPR

	Asking the User for Information Over a Voice Connection
	This topic shows how to ask the user questions using the TApdSapiEngine and TApdSapiPhone compone...
	The TApdSapiPhone component provides several methods for asking the user for information. These m...
	Required components
	TApdComPort
	TApdSapiEngine
	TApdSapiPhone

	Prerequisite topics
	“Installing SAPI4” on page�180.
	“Configuring a TAPI Device” on page�91.
	“Setting up Speech Synthesis” on page�182.
	“Selecting Speech Synthesis Voices” on page�183.
	“Setting up Speech Recognition” on page�185.
	“Selecting a Speech Recognition Engine” on page�187.
	“Using Speech Synthesis and Recognition Over a Phone” on page�191.

	What to do
	After a connection has been made, call one of the AskFor methods of the TApdSapiPhone component. ...
	The AskFor methods will return when some reply is received from the user. The following example s...
	procedure TForm1.Button2Click(Sender: TObject);
	var
	Reply : Boolean;
	begin
	case ApdSapiPhone1.AskForYesNo(Reply, 'Say yes or no') of
	prOk : { The user response is in Reply. }
	prAbort : { A fatal error when getting the response }
	prNoResponse : { The user did not respond }
	prOperator : { The user asked for an operator }
	prHangUp : { The user asked to hang up }
	prBack : { The user wants to go back a step }
	prCheck : { The user gave an ambiguous reply }
	prError : { There was a recoverable error }
	prUnknown : { There was an inexplicable reply }
	end;
	end;
	The AskFor methods return a variety of codes. These codes need to be handled by your application....

	Related examples
	EXSAPIPH.DPR

	RS-485 Support
	This topic discusses how to use the TApdComport with an RS-485 serial port.
	Required components
	TApdComPort

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	None

	What to do
	RS-485 is a standard for multidrop communications. It’s typically used when a computer needs to c...
	RS-485 boards for PCs handle this transition between sending and receiving in a couple different ...
	One method is placing your data in a packet with special characters. This method has always worke...
	Due to these tight timing requirements, the TApdComport has a RS485Mode property that can be set ...

	Related examples
	None

	Setting Up a Terminal
	This topic shows how to configure a TAdTerminal component to display incoming and outgoing inform...
	The ability to display all characters being sent and received is an integral part of most communi...
	Required components
	TApdComPort
	TAdTerminal

	Prerequisite topics
	“Setting Up a Comport” on page�74.

	Related components
	TAdTTYEmulator
	TAdVT100Emulator

	What to do
	Drop a TAdTerminal component on the form. If a TApdComPort component is already on the form, it i...
	If the TApdComPort.AutoOpen property is True, the TAdTerminal component opens the port when it is...
	To insert characters into the terminal window without sending them to the remote machine, use the...
	procedure TForm1.ActivateBtnClick(Sender : TObject);
	begin
	ApdComPort1.Open := True;
	AdTerminal1.ComPort := ApdComPort1;
	AdTerminal1.Active := True;
	AdTerminal1.WriteString(#13#10+'Hello world'#13#10);
	end;

	Related examples
	TERMDEMO.DPR
	EXMDI.DPR

	Setting Up a Terminal Emulator
	This topic shows how to set up a terminal to use a different emulator.
	There are two terminal emulators available with Async Professional: the teletype (TTY) emulator a...
	Required components
	TApdComPort
	TAdTerminal
	TAdVT100Emulator

	Prerequisite topics
	“Setting Up a Comport” on page�74.
	“Setting Up a Terminal” on page�198.

	Related components
	TAdTTYEmulator

	What to do
	Drop a TAdVT100Emulator onto the form and then a TAdTerminal. Dropping the components in this ord...
	If you wish to provide another emulator for use with the terminal, there are several steps you mu...

	Related examples
	EXNEWTRM.DPR
	TERMDEMO.DPR

	Chapter 6: Demonstration Programs
	The supplied demonstration programs combine many Async Professional features into each program. W...
	The terminal demo, TermDemo, is a simple terminal�oriented communications program.
	The modem database demo, ModDemo, demonstrates a user interface for adding, modifying, and deleti...
	The four fax demonstration programs, SendFax, RcvFax, Cvt2Fax, and ViewFax, are fairly simple pro...
	RasDemo is a simple Remote Access Service dialer program that can dial and manipulate RAS phonebo...
	FtpDemo is a simple FTP client program that can connect to an FTP server, login, transfer files, ...
	The paging demo, ExPaging, demonstrates a user interface for maintaining a list of pager IDs and ...
	TCom3 is a comprehensive communications demonstration program that provides one of the endless po...
	Terminal Demo
	TermDemo is a simple terminal communications program. It includes only terminal window features w...
	The main window
	TermDemo’s main window, shown in Figure 6.1, consists of the terminal window and a menu bar. The ...
	Figure 6.1: The main window.

	The terminal portion of the main window is TermDemo’s primary work area. The terminal displays ch...
	The terminal has two modes: normal mode and scrollback mode. Normal mode is the default. Pressing...

	The menu bar
	The File menu
	Playback file
	Use this menu option to play back a file through the emulator. TermDemo reads data from the file ...

	Clear screen
	This option clears the terminal window and the screen buffer. The cursor is placed at row 1, colu...

	Exit
	Exits TermDemo.

	The Edit menu
	Copy
	This is the only menu choice for this submenu. Cut and Paste options are not available (as they a...
	Selecting the Copy menu item copies the currently selected text to the Windows clipboard. Text ca...

	The Communications menu
	Set parameters
	Selecting this item pops up the Communication Parameters dialog box as shown in Figure 6.2.
	Figure 6.2: Communications Parameters dialog box.

	You can use this dialog box to change the current communications port, baud rate, parity, data bi...
	When you are satisfied with the selected parameters, click OK or press Enter. TermDemo closes the...

	Configure TAPI
	Selecting this menu item allows you to view or change the properties of the selected TAPI device,...
	Figure 6.3: TAPI device properties dialog box.

	The Emulation menu
	Set parameters
	Selecting this menu item pops up the Emulator Options dialog box, shown in Figure 6.4, to enable ...
	Figure 6.4: Emulator Options dialog box.

	Modem Database Demo
	A modem database is a collection of information about one or more modems, including all the strin...
	ModDemo is a program that creates or modifies modem databases like AWMODEM.INI. You can use it to...
	The main window
	ModDemo’s main window, shown in Figure 6.5, consists of the following list box, which contains a ...
	Figure 6.5: ModDemo’s main window.

	The add button
	Click on the add button to add a new modem definition to the database. The screen shown in Figure...
	Figure 6.6: Modem Information dialog box.

	The dialog box is initially empty when you are adding a new modem. Use this dialog box to enter g...
	In the Name field, at the top of the dialog box, you can enter an arbitrary name for the modem. T...
	The Commands group of fields, to the left and down from the Name field, is where you enter inform...
	When entering commands, there are a few special characters and tokens that you can enter to alter...
	The Configure command can also contain one special character that the other commands cannot. If y...
	The Return Codes group of fields, to the immediate right of the Commands group, is where you ente...
	At the bottom of the dialog box are six buttons. The three buttons on the left are used to enter ...
	Clicking on the Correction or Compress button will pop up another dialog box into which you can e...
	The tag entry dialog box has room to hold five different data compression or error correction tag...
	Also at the bottom of the Modem Information dialog box is a button labeled Baud. Clicking on this...
	Figure 6.7: Link Rate Information dialog box.

	The first field on this dialog box is labeled Default BPS Rate. In this field, enter the default ...
	When you are finished entering data about the new modem, click OK at the bottom of the modem entr...

	The Change button
	The Change button at the bottom of the main window allows you to change a modem’s information. To...
	Clicking the Change button, or double clicking on a modem’s name, pops up the same modem data ent...

	The Delete button
	You can delete a modem definition from the database by clicking on the Delete button. Highlight t...

	The File menu
	The File menu, attached to the main window, provides various services for opening databases, crea...
	New
	If you want to create a new modem database, select the File | New option. This will clear any pre...

	Open
	You can load an existing modem database, such as Async Professional’s AWMODEM.INI, into the progr...

	Save
	Once you have made additions, changes, or deletions to a modem database, you must save them to a ...

	Save As
	Selecting File | Save as from the menu allows you to save the current modem database under a new ...

	Exit
	Selecting File | Exit closes the ModDemo program. If you have made changes to the loaded database...

	The Edit menu
	The Edit menu duplicates the functions of the push buttons at the bottom of the main window. Sele...

	Send Fax Demo
	SendFax is a simple fax program that can send multiple faxes, with optional cover pages to multip...
	The main window
	SendFax does not use menus or toolbars. All of the options are set from the main form, shown in F...
	Figure 6.8: SendFax main window.

	The top half of the main form contains the configurable fax options. Use the Fax class radio butt...
	The Dial attempts and Retry wait edit controls control how many times each call is tried if busy ...
	The Station ID edit control contains the station ID, the identification string that is sent to th...
	The Dial prefix edit control, which defaults to an empty string, is for a standard dialing prefix...
	The Modem initialization string, which defaults to an empty string, can be used to send modem ini...
	Fax header allows you to specify the header at the top of each transmitted page. The default fax ...
	Fax sent by APro SENDFAX using APro 3.0 04/15/97 12:15pm
	See HeaderLine in the Reference Guide for more information.
	The Use Enhanced Fonts check box control allows you to use TrueType fonts for the fax Header and ...
	The Head Font and Cover Font buttons will display the standard Font Selection Dialog, which allow...
	Faxes to send contains a list of the fax files queued for sending. As each fax file is successful...
	The Add, Modify, and Delete buttons are used to modify the list of faxes displayed in the Faxes t...
	Figure 6.9: Add/modify/delete faxes dialog box.

	After you finish adding or modifying, click on Add to return to the main window. To remove a fax ...
	The Send faxes button starts the fax transmission process, starting with the first fax in the lis...
	The Exit button ends the program. Any faxes still queued for transmission are not sent, nor are t...
	The SendFax demonstration program contains standard TApdFaxStatus and TApdFaxLog components for d...

	Receive Fax Demo
	RcvFax is a simple fax program that waits for and answers incoming fax calls until it encounters ...
	The main window
	RcvFax does not use menus or toolbars. All of the options are set from the main form, shown in Fi...
	Figure 6.10: RcvFax main window.

	The top half of the main form contains the configurable fax options. Use the Fax class radio butt...
	The Name style radio buttons determine how incoming fax files are named. The default choice is “c...
	faxnnnn.apf, where nnnn is a sequential number (starting at 0001) that is the first free number f...

	The other available choice is month/day, where incoming faxes are named:
	mmddnnn.apf, where mm is the month, dd is the day, and nnnn is a sequential number (starting at 0...

	The Receive directory edit control contains the directory name where incoming fax files are store...
	The Modem initialization string, which defaults to an empty string, can be used to send modem ini...
	The Received faxes list box contains a list of all the fax files successfully received since RcvF...
	The Receive faxes button tells RcvFax to begin listening for faxes. RcvFax then displays its stat...
	The Exit button ends the program.
	The RcvFax demonstration program contains standard TApdFaxStatus and TApdFaxLog components for di...

	Fax Converter Demo
	Cvt2Fax is a program that converts text, BMP, PCX, DCX, and TIFF files into APF (Async Profession...
	The source files and forms are specially designed to allow you to simply add the forms and units ...
	The main window
	Cvt2Fax’s main window is used for selecting files to convert.
	Figure 6.11: Cvt2Fax main window.

	Files that are queued for conversion are shown in the lower list box. You can put a file directly...
	Alternately, the Folders list box displays all of the files in the current directory that match t...
	To remove files from the Files to convert list box, select the files and click the Remove button.
	The Drives and Folders list boxes can be used to access all the drives and directories on your sy...

	Conversion options
	Cvt2Fax allows you to specify several options for converting faxes. Click Options on the main win...
	Figure 6.12: Fax Conversion Options dialog box.

	The Resolution radio buttons allow you to choose the resolution of converted faxes. The default r...
	The Fax width radio buttons allow you to choose the width of converted faxes. The default width—t...
	The Scaling radio buttons allow you to choose how graphics images are scaled when converted to st...
	The Positioning radio buttons determine the position of image files on the fax page. Graphic imag...
	The Font size radio buttons allow you to choose a font size for ASCII text files. Standard font (...
	The Enable Enhanced Text check box gives you the option to use TrueType fonts in the conversion o...
	An ASCII text file can be converted into one long page, or it can be broken up into multiple page...
	When you are finished setting options, click the OK button and the new options take effect. To di...

	Converting
	After you select all the files you want to convert and set the desired options, click OK in the m...
	Figure 6.13: Conversion Progress status dialog box.

	The Converting list box displays the names of the files to be converted and highlights the name o...
	After all of the files are converted, you are returned to the fax converter main window where you...

	Fax Viewer Demo
	ViewFax implements a fax viewer component that allows you to view APF files. The source files and...
	The main window
	ViewFax’s main window, shown in Figure 6.14, consists of a viewer area and a menu bar.
	Figure 6.14: ViewFax main window.

	The viewer area, which constitutes the bulk of the screen, is where faxes are displayed. If the f...

	The menu bar
	The File menu
	Open
	This option allows you to load fax files (APF files) into the viewer. The Windows standard file o...
	Figure 6.15: Open File for Viewing dialog box.

	Select the file to view and it is loaded into the viewer. When a file is loaded, scaling or rotat...

	Print setup
	ViewFax can print faxes in addition to viewing them. Choose Print Setup to display the standard W...
	Figure 6.16: Print dialog box.

	Print
	This option prints the viewed fax to the printer chosen using the Print Setup option. If no print...
	Faxes are printed using the psFitToPage option of the TApdFaxPrinter component. This means that e...
	If no fax is loaded, the Print option does nothing.

	Exit
	Exits ViewFax.

	The Edit menu
	Select All
	This option selects the fax page that is currently being viewed. The selection is displayed in in...

	Copy
	This option copies the selection to the clipboard. You can select an entire fax page by using the...

	The View Menu
	Zoom In
	This option causes the displayed fax to be increased in size by 25%. The default display scaling ...
	The maximum size at which an image can be displayed is 400%. Choosing Zoom In when the display is...

	Zoom Out
	This option causes the displayed fax to be decreased in size by 25%. The default display scaling ...
	The minimum size at which an image can be displayed is 25%. Choosing Zoom Out when the display is...

	25%, 50%, 75%, 100%, 200%, and 400%
	Selecting a percentage causes the fax to be viewed at that percentage of its original size. When ...

	Other
	If the pre-defined scaling settings are not sufficient for your viewing, choose the Other option ...
	Figure 6.17: Custom Scaling dialog box.

	You can enter any number between 25 and 400, but even numbers and multiples of 5 usually produce ...

	No Rotation, Rotate 90 degrees, Rotate 180 degrees, and Rotate 270 degrees
	Because paper can be fed into a fax machine four different directions, it is sometimes useful to ...

	Whitespace Compression
	ViewFax has the ability to compress large amounts of vertical white space in displayed faxes into...
	When the Whitespace Compression option is selected, the dialog box (shown in Figure 6.18) is disp...
	Figure 6.18: Whitespace Compression dialog box.

	The check box at the top of the dialog determines whether white space compression is enabled. The...
	White space compression does not take effect immediately. The settings take effect when you next ...

	Page Flags bar
	The Page Flags status bar displays the options currently in effect for the fax in the display. Th...

	Fax Monitor and Fax Server Demo
	FaxMon and FaxServr are two projects that work together to monitor fax printer print jobs and to ...
	FaxMon
	The FaxMon project detects and monitors the print jobs sent to the Async Professional fax printer...
	Figure 6.19: FaxMon dialog box.

	The Server application edit control designates the application that processes the fax once the fa...
	The Jobs list box control displays the print jobs that have been sent to the fax printer driver. ...

	FaxServr
	The FaxServr project receives the custom messages from FaxMon that are sent when a print job is c...
	Figure 6.20: Fax server dialog box.

	The State label displays the current state of the fax transfer. Enter the phone number of the rec...

	Fax Server Demo
	FaxSrvX is a demonstration program which will monitor print jobs sent to the Async Professional f...
	When a print job is sent to the fax printer driver, the Add/modify/delete faxes dialog is shown. ...

	RAS Dialer Demo
	RASDEMO is a simple RAS dialer program that can dial and manipulate RAS phonebooks. It is based o...
	To use RASDEMO, you must have RAS is installed on your machine. RAS is installed by default on mo...
	The main window
	The main window, shown in Figure 6.21, consists of a menu bar, edit controls and a status line.
	Figure 6.21: RasDemo main window.

	The menu bar provides access to all of RasDemo’s functions. From the menu you can dial, hangup an...

	The menu bar
	The File menu
	Exit
	Exits RasDemo.

	The Call menu
	Dial (95/98/ME)
	Initiates dialing for the specified phonebook entry and displays a connection status dialog durin...

	Phonebook dialog (NT/2000)
	For Windows NT/2000 users, another dialing option is available via NT’s main dial-up networking d...
	Figure 6.22: Dial-Up Networking dialog box.

	Hangup
	Terminates a RAS connection.

	The Phonebook menu
	New entry
	Invokes a multi-page dialog box, shown in Figure 6.23, that takes you through the process of crea...
	Figure 6.23: New Phonebook Entry dialog box.

	Edit entry
	Invokes a multi-page dialog box, shown in Figure 6.24, that allows you to edit an existing phoneb...
	Figure 6.24: Edit Phonebook Entry dialog box.

	Delete entry
	Deletes the current entry from the current phonebook. If a connection has been established for th...

	Refresh list
	Refreshes the list of entries for the current phonebook in the Phonebook Entry combo box. This is...

	FTP Client Demo
	FTPDEMO is a simple FTP client program that can connect to an FTP server, login, transfer files, ...
	To use FTPDEMO, you need an existing Winsock/network connection. If you do not have an Inter/Intr...
	The main window
	The main window, shown in Figure 6.25, consists of a menu bar, three tabbed notebook pages, and a...
	Figure 6.25: FtpDemo main window.

	The menu bar provides access to all of FtpDemo’s functions. From the menu you can login in to an ...
	The tabbed notebook pages provides access to various user login ID information, file transfer opt...
	The information display window shows various remote directory and status information that is requ...

	The menu bar
	The File menu
	Login
	Opens a control connection to an FTP server and logs in with the user login ID information specif...

	Logout/Quit
	Logs the user out and closes the control connection to an FTP server.

	Send
	Uploads a local file from the local machine to an FTP server. A dialog prompts for the remote and...

	Receive
	Downloads a remote file from an FTP server to the local machine. A dialog prompts for the remote ...

	Rename
	Renames a remote file. A dialog prompts for the remote file name and the new file name.

	Delete
	Deletes a remote file. A dialog prompts for the remote file name.

	Exit
	Exits FtpDemo.

	The Directory menu
	List
	Obtains a List of the contents of a remote directory and displays it in the Requested Information...

	Change
	Changes the current working directory at the server. A dialog prompts for the remote directory name.

	Create
	Creates a new remote directory. A dialog prompts for the remote directory name.

	Rename
	Renames a remote directory. A dialog prompts for the remote directory name and the new directory ...

	Delete
	Deletes a remote directory. A dialog prompts for the remote directory name.

	The Misc menu
	Help
	Obtains help information from the server and displays it in the Requested Information window. A d...

	Server status
	Obtains status information about a remote file, a remote directory, or the server itself and disp...

	Send Ftp command
	This option allows the user to issue an FTP command (as specified by RFC 959) directly to the ser...

	Log dialog
	This options enables and disables FTP operation logging. When logging is enabled, a log entry is ...

	Clear displays
	This clears the Requested Information and Server Reply display windows.

	Login information
	Use this page to specify the domain name of the FTP server, user login ID, and to log in to the s...
	Be sure to set these fields appropriately before attempting to login to an FTP server.

	Transfer options
	This page, shown in Figure 6.26, allows you to specify various file transfer options.
	Figure 6.26: Transfer options page.

	Send mode and receive mode determines how an existing destination file will be handled. If the de...
	Select Append to transfer the file data to the end of the existing file.
	Select Replace to overwrite the existing.
	Select Unique to transfer the file data to a unique file name created by the server.

	If the FTP server supports resumable transfer, Restart indicates that the Send or Receive file tr...
	You can also adjust the maximum time you want to wait for the server to replay to a command. The ...

	Server replies
	This page, shown in Figure 6.27, consists of a window that displays replies received from the ser...
	Figure 6.27: Sever Replies page.

	Paging Demo
	ExPaging is a simple paging program that allows the user to maintain a list of pager IDs and acce...
	The main window
	ExPaging does not use menus or toolbars. All of the primary options are available from the main f...
	Figure 6.28: ExPaging main window.

	The right half of the main form contains the paging status display which shows messages indicatin...
	On the left side of the main form, from the top, are an edit area to enter the message to be sent...
	Beneath the list are two edit boxes that automatically update for the currently selected pager in...
	Next to the Edit boxes are a check box and two buttons for controlling the logging features of Ex...
	Finally, at the bottom of the screen is a status line with a display showing the current paging s...

	Managing the pager list
	ExPaging manages a collection of pager IDs and access addresses. These are maintained in a plain ...
	Next to the list of pagers on the main form are three buttons: Add, Edit, and Remove. ExPaging ca...
	Add and Edit both bring up a secondary form, the Add/Edit User form (shown in Figure 6.29). On th...
	Figure 6.29: Update User dialog box.

	The first edit box is for an identifier for the pager; generally this will be the user’s name but...
	So, if you ever need to enter more than one pager for an individual (e.g., someone who has both a...
	Next comes the Protocol RadioGroup which allows selection of the paging protocol; either via phon...
	Third is the edit box for the Pager ID and last is a box to enter the paging server “address” (TA...
	OK closes the form and causes the main form to add or update the entry. Cancel closes the form an...

	Page logging
	ExPaging includes the facility to keep track of sent pages by making notations in a paging log. T...
	Clicking the View button brings up the View Pager Log form, shown in Figure 6.30.
	Figure 6.30: Page Log Viewer form.

	The main TMemo area shows the contents of the currently selected Paging Log. You can view other L...
	The Set button makes the currently selected file the default Log file for ExPaging; any new page ...
	OK closes the Log file viewer and causes ExPaging to update which Log file is used, if that was c...

	Glossary
	This glossary contains a combination of industry accepted definitions and, where noted, definitio...
	Alphanumeric paging
	An extension of the numerical paging capability. Alphanumeric paging allows transmission of gener...

	ANSI
	American National Standards Institute. In Async Professional, references to ANSI usually refer to...

	asynchronous serial communication
	Serially transmitted data in which each character is surrounded by start and stop bits. That is, ...

	AT commands
	An industry-standard set of commands for controlling modems introduced with the Hayes SmartModem.

	baud rate
	A measure of modulation rate, not communication speed. Technically, baud rate means the number of...

	Bell 103
	The AT&T modem standard for asynchronous communication at speeds up to 300 bps.

	Bell 212A
	The AT&T modem standard for asynchronous communication at speeds up to 1200 bps on dial-up teleph...

	bps
	Bits per second, a measure of raw communications speed, which quantifies how fast the bits within...

	break
	A signal that can be transmitted or received over serial communication links. A break is not a ch...

	client
	An application that connects to a server for the purpose of exchanging of data.

	CCITT
	Comité Consultatif International de Télégraphique et Téléphonique (International Telegraph and Te...

	character (in terminal emulation)
	A binary value, usually byte-sized, the visual representation of which is controlled by font sele...

	character set mapping table
	A list of character ranges in character sets and the fonts and glyphs that should be used to disp...

	character-time
	This term is used to mean the amount of time between the start bit and stop bit of a serial byte ...

	checksum
	A byte, or bytes, appended to the end of a block of data that is used to check the integrity of t...

	comport
	In this manual, refers to a TApdComport component, or a component derived from TApdCustomComport ...

	COMM.DRV
	The Windows device driver that performs all of the low-level work required to send and receive us...

	CRC
	A byte, or bytes, appended to the end of a block of data that is used to check the integrity of t...

	CTS
	Clear to send. This is a modem control signal that is raised by the modem when it is ready to acc...

	data bits
	The bits in a serial stream of data that hold data as opposed to control information. The number ...

	data compression
	Refers to the ability of some modems to compress data before passing it to the remote modem. Ther...

	DCB
	Device control block. A structure passed from a Windows program to the communications driver. It ...

	DCD
	Data carrier detect. A signal provided by a modem to indicate that it is currently connected to a...

	DCE
	Data communications equipment. Generally, this refers to a modem.

	device layer
	This layer of Async Professional provides the physical connection between the software and the ha...

	DNS
	A remote database that contains a list of host names and their corresponding IP addresses.

	dot notation
	A way of specifying an IP address (e.g., 165.212.210.12).

	DSR
	Data set ready. This is a modem control input signal to a UART that tells the UART that the remot...

	DTE
	Data terminal equipment. Generally, this refers to a terminal or a PC emulating a terminal.

	DTR
	Data terminal ready. This is a modem control signal raised by a UART to notify the remote (usuall...

	emulation
	Refers to a PC program that mimics the “appearance” and functionality of a terminal in such a fas...

	error correction
	Refers to the ability of some modems to check the integrity of data received from a remote modem....

	escape sequences
	Terminal control sequences in the stream of data coming into the terminal.

	FIFO mode
	A mode of operation for 16550 UARTs that takes advantage of the UART’s first�in�first�out buffers.

	flow control
	A facility that allows either side of a serial communication link to request a temporary pause in...

	full duplex
	1. A mode of communication in which the receiving computer automatically echoes all data it recei...

	glyph
	The visual representation of a character.

	half duplex
	1. A mode of communication in which the receiving computer does not echo any data back to the tra...

	handshaking
	Refers to the initial transfers of data between two processes. Usually this term is used to descr...

	host name
	The text description of an IP address (e.g., joeb.turbopower.com).

	interface layer
	The layer of Async Professional that contains the majority of the application programming interfa...

	IP address
	The 32-bit address of a network computer. All IP addresses are unique.

	IRQ
	One of the lines on the PC or PS/2 bus that is used to request a hardware interrupt. Any device t...

	ITU-TSS
	International Telecommunications Union-Telecommunications Standardization Sector. A European comm...

	LAP M
	An error-correction protocol included with the most recent CCITT communications standard V.42.

	line error
	Refers to one of the following errors: UART overrun, parity error, or framing error. Such errors ...

	lookup
	An action that Winsock performs to retrieve the IP address for a host name, or to retrieve the po...

	MNP
	Microcom Networking Protocol. A communications protocol designed by Microcom, Inc. and placed in ...

	modem
	A device that facilitates serial communication over phone lines. The term is derived from the phr...

	network shared-modem pool
	A collection of modems in a network that are available to any PC in the network. In a typical sit...

	paging
	Originally, simply a means of notifying someone to call back to an answering service; and later a...

	paging device
	Also “paging receiver” or "pager". The usually small electronic device capable of receiving pagin...

	paging receiver
	See “paging device”

	paging server
	A device and/or software that manages requests for pages and transmits them to the appropriate pa...

	parity
	A bit that is used to check the integrity of a byte. The parity bit is set by the transmitter and...

	port (Winsock)
	A number from 0 to 32767 that, along with the IP address, is used to create a socket.

	protocol
	Generally, an agreed upon set of rules that both sides of a communications link follow. This term...

	remote device
	In Async Professional, this term is used to describe what’s attached to your serial port. Since i...

	RI
	Ring indicator. A signal provided by the modem to indicate that a call is coming in (i.e., the ph...

	RS-232
	An EIA (Electronic Industries Association) standard that provides a physical description (voltage...

	RTS
	Request to send. This is a modem control signal that the UART uses to tell the modem that it is r...

	S-registers
	A register in a Hayes-compatible modem that stores configuration information. Lower numbered S-re...

	script
	A list or file containing communications commands. Script languages are often provided by general...

	scrollback view
	When a terminal is in scrollback view, it shows a history of data that have scrolled off the top ...

	scrolling region
	A range of lines within which writes to the screen and scrolling are restricted.

	serial data
	Refers to data transmitted over a single wire where bits are represented as either high or low si...

	server
	An application that listens on a socket for client connection attempts.

	SNPP
	Simple Network Paging Protocol, a formal specification of transmitting alphanumeric page requests...

	socket
	A Windows object that is created using a combination of an IP address and port number. A socket i...

	start bit
	The bit in a serial stream that indicates a data byte follows. This value cannot be changed; UART...

	stop bits
	The bits in a serial stream that indicate all data bits were sent. One or two stop bits can be us...

	streaming protocol
	A file transfer protocol that doesn’t require an acknowledgement for each block. Such protocols a...

	TAP
	Telelocator Alphanumeric Protocol, a formal specification for transmitting alphanumeric page requ...

	Telnet
	A network protocol designed to allow two network computers to communicate via a terminal screen.

	terminal emulator
	Software that interprets special sequences of characters as video control information (for settin...

	terminal
	A device (or software) that displays received data to a CRT and transmits keyboard characters to ...

	trigger
	An Async Professional term describing an event or condition noted by the internal dispatcher and ...

	UART
	An acronym for Universal Asynchronous Receiver Transmitter. This is the device (usually one integ...

	V.17
	CCITT 7200, 9600, 12000, and 14400 bps faxmodem standard.

	V.21
	CCITT 300 bps faxmodem standard.

	V.22
	CCITT 1200 bps modem standard.

	V.22bis
	CCITT 2400 bps modem standard.

	V.25bis
	CCITT communications command set. Frequently implemented in addition to the AT command set.

	V.27, V.27 ter
	CCITT 2400 and 4800 bps faxmodem standard.

	V.29
	CCITT 7200 and 9600 bps faxmodem standard.

	V.32
	CCITT 9600 bps communications standard which describes a standard modem modulation technique. Any...

	V.32bis
	CCITT standard for data modem modulation rates up to 14400 bits per second.

	V.34
	CCITT 28800 bps communication standard which describes a standard modem modulation technique. V.3...

	V.42
	CCITT error correcting protocol standard. Includes both MNP-4 and LAP-M error correction protocols.

	V.42bis
	CCITT 4:1 data compression protocol. This data compression scheme generally achieves a much highe...

	V.FC/V.Fast
	An early unratified version of the V.34 specification. V.34 modems can usually connect to V.FC an...

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

