
.

Recognition Systems, Inc.

FingerKey Network
Command Specification

Command subset as it applies to the
HandNet-Lite Software Product, phase 1

Version 0.27

This document contains information which Recognition Systems, Inc. considers confidential and/or privileged. Any review,
dissemination, copying, printing or other use of this document by persons or entities other than the person or entity to
whom it is initially given is prohibited. Unauthorized persons or entities are requested to destroy this document
immediately.

1520 Dell Ave
Campbell, CA 95008

 2

FingerKey Network Command
Specification
Command subset as it applies to the HandNet-Lite
Software Product, phase 1

Forward

The purpose of this document is to state the commands used by the HandNet-Lite software product and
describe those commands and their associated data structures in details. The HandNet-Lite software product
uses many but not all of the Network commands available in the FingerKey terminal (henceforth called the
FKT).

Network commands (just “commands” from now on) originate from many possible sources. The Network
Command Parser inside of the FKT will always see the same data stream regardless of the physical source of
data. The following list shows the different command sources:

1. RS232 port

2. RS485 port (½ duplex)

3. Ethernet port (10/100bT) – TCP/IP

4. IrDA port – most likely TinyTP

Normally only one of these sources will be active at a time. It may be possible to have the RS232/422/485
port, the Ethernet port, and the IrDA port all active and receiving commands at the same time but this is not
something we actually want to deal with. It is likely that we will enforce a single “Host” source rule in the
firmware. In any event, regardless of the source, the data will be formatted the same. This greatly simplifies
the firmware. Reader should review the Command/Response Protocol Structure in Appendix B before
proceeding to understand the command details.

HandNet-Lite Goal

HandNet-Lite is a software package running on a PC that controls fingerprint readers. The main functions of
HandNet-Lite are to:

• Configure a network of fingerprint readers and set their configuration properties.

• Manage the users known to the network and the individual fingerprint readers through access
profiles.

 3

• The distribution of fingerprint biometric templates to specific readers according to access profiles.

See the HandNet-Lite Software Specification and HandNet-Lite clarification document for more details.

What we’re attempting to do here is list those commands in the FKT that are most likely going to be needed
by HandNet-Lite.

Command List

The Host and the FKT communicate through a Command-Response pair respectively. Commands are named
from the Host point of view, i.e., GET means the Host will retrieve something from the FKT; SET something
means the Host will send data to the FKT. When a Host command can be and is carried out, the FKT
acknowledges with a positive response of the command performed, either in the form of requested data to be
returned or just the command being carried-out successfully, piggy-backed with the current system status
bytes. Otherwise, for one reason or another, when the Host command cannot be carried out, the FKT issues a
NAK response accompanied by a reason (See Appendix A for details). The following commands will be used
by Sierra.

1. Status Poll

2. Status Clear

3. Get / Put User Record

4. Delete User Record

5. Clear User Database

6. Get / Set Setup

7. Idle / Resume

8. Get Reader Info

9. Get / Set Time

10. Beeper control

11. LED control

12. Put Card Format

13. Delete Card Format

14. Clear Card Format Database

15. Get Next Card Format

16. FKT (Soft) Reset

17. FKT Diagnostic Command

The following commands will NOT (initially) be available for/in HandNet-Lite, phase 1:

 4

18. Remote Enroll

19. Remote Verify

 5

Command Details

The following sections detail each of the commands listed above.

Status Poll (0x30)
The Status Poll command is used to determine the current state of the device, whether there are datalogs
present, as well as other yet-undetermined-things. This command is based on the HandReader command, but
differs in that many of the bits returned by a HandReader have no analog in the FKT. Note that this
FingerKey model does NOT have datalogs. We’re reserving space in the response for this feature as it will be
required in future models.

StatusPoll (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x30* StatusPoll command
Total Data length 1*

The response packet from the FKT contains the command type and 3 status bytes in its Data field. Currently,
only the SysStat0 byte is defined and their bit definitions are detailed in Table 2. SysStat1 and SysStat2 bytes
are undefined and are reserved for future expansion. The format of the Data field in response packet (from
FKT) is as follows:

StatusPoll (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x30* StatusPoll command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Table 2: SysStat0 Bit Definitions

Label Bit Mask Description
FKT_COLDBOOT 0 01H Set when FKT is completely initialized to its default/factory

configuration via the ColdBoot button being pressed during
power up. Cleared by StatusClear command (Host uses
this bit to determine to reload the user database, if
necessary).

FKT_LOCKOUT_FOR_HOST 1 02h Set when Idle command is received and the FKT is able to
go to Idle mode to lockout local activities for the Host.
Cleared when the Resume command is received, or when
Idle/autoResume timeout expires.

 6

TAMPER 2 04H This bit indicates whether a tamper has occurred and will be
software-latched so that the Host has an opportunity to read
it. Subsequently, the Host can send a StatusClear command
to clear this field, and the tamper switch will be sensed
again.

DBASE_FULL 3 08H Set when the user database is full. Cleared when one or
more user database slots become available.

DBASE_EMPTY 4 10H Set when the user database is empty. Cleared when one or
more user database slots are filled.

USER_REC_MOD 5 20H Set when there is at least 1 new/modified user record,
deleted user record, or database erased at FKT. Cleared
when StatusClear command is received. See Note 1 in
GetNextUserRecord section for operation details

DURESS_DETECTED 6 40H A duress condition occurs at the FKT. The Host is notified
with this bit field via the StatusPoll command, and can
subsequently clear this field via the StatusClear command.

SysStat0_Bit7 7 80H TBD

Status Clear (0x31)
The Status Clear command is used to clear a status bit in one of the status bytes. This is used to ensure that
the Host and FKT have a full handshake in the status bits notification.

StatusClear (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x31* StatusClear command
Status Clear Type 1* 1* 0* = Clear FKT_RESET bit in SysStat0 byte

1* = Clear USER_REC_MOD bit in SysStat0 byte, see section
Note 1.

2* = Clear TAMPER bit in SysStat0 byte, see section Note 2.
3* = Clear DURESS_DETECTED bit in SysStat0 byte.
(4-255)* = TBD

Total Data length 2*

The FKT returns a positive response when the command is carried out successfully, with the format of the
Data field in the response packet as follows:

StatusClear (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x31* StatusClear command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

 7

When the StatusClear command cannot be carried out, for example an undefined Status Clear Type is
requested, the FKT responds with a NAK accompanied by a reason (See Appendix A for details).

Note 1: USER_REC_MOD bit in SysStat0 will be re-scanned when Status Clear Type (1) is carried out
to prevent a premature clearing of this bit when there are still un-retrieved new/modified user records.

Note 2: TAMPER bit in SysStat0 will be re-scanned when Status Clear Type (2) to reflect the latest
condition of the tamper switch.

User Records

This is the current FingerPrint user record data structure. It consists of a Header1 data structure and 2
Fp_Template data structures. These data structures are used in the GetUserRecordByID, GetNextUserRecord,
and PutUserRecord commands and responses. The data structures are detailed as follows:

typedef unsigned char Fp_Template[800];

typedef struct
{
 unsigned char id[26]; // ID is key for record search, 25 digits + Null string terminator.
 // ID entered from keypad is 15 digits, whereas ID from Wiegand can be
 // up to 25 digits max.
 unsigned char header1_flags; // See Table 1 for bit definitions
 unsigned char threshold; // 0 d - 255. Threshold level for biometric match, scaled to be similar
 // to HandReader threshold.
 // 0 d: Use global fingerkey reader threshold (in Setup)
 unsigned char authority; // Permission level for product menu tree
 // 0 d: None,
 // 1: Service, 2: Setup, 3: Management, 4: Enrollment, 5: Security
 unsigned char timezone; // 0 d. Timezone table index; not used in this model
 BYTE effective[8]; // Date time User Record is effective in Host database
 BYTE expires[8]; // Date time User Record is expired in Host database
} Header1;

typedef struct
{
 Header1 header_1;

 Fp_Template template_1;
 Fp_Template template_2;
} Fp_UserRecord;

 8

Table 1: header1_flags (in struct Header1) bit definitions

Label Bit(s) Mask Description
User Record Status 0 01H 1 = User record is new or has been modified

0* = User record has NOT been changed
FKT: RW. Host: RW.

No Finger Verify 1 02H 1 = User verification does not require biometric match
0* = User verification requires biometric match
FKT: RW. Host: RW.

Second Finger As Duress 2 04H 1 = Use second fingerprint template as duress
0* = Use second fingerprint template as normal
FKT: RW. Host: RW.

Template Count 4, 3 18H Fingerprint template counts in this user record
00*, 01, 10 = zero, 1, 2 fingerprint templates
11 = Undefined
FKT: RW. Host: RW.

Reserved 5 20H TBD
Reserved 6 40H TBD
Reserved 7 80H TBD

Get User Record by ID (0x32)
This command is used to get a user record by ID number. It looks up and possibly returns the user record
with the indicated ID (Null-terminated string), depending on “what” is specified. This command should be
bracketed by the Idle command and the Resume command to ensure the FKT is idle before sending the ID and
“what” fields. Note that the user-record-attribute-mask of the “what” field (See Table 3) is ignored in the get
user record by ID command; only the user-record-portion-mask of the “what” field is relevant.

GetUserRecordByID (command packet from Host) is as follows:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x32* GetUserRecordByID command
ID 26* 1* 25 ID digits + 1 Null string terminator
what 1* 27* what fields of the user record to be returned. See Table 3.
Total Data length 28*

If the User ID exists, the FKT returns the portion (specified by “what”) of the user record. If the “what”
portion of the user record to be returned fits in 1 packet fragment, the format of the Data field in the first (and
also last) GetUserRecordByID response packet (from FKT) is as follows:

GetUserRecordByID (first response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x32* GetUserRecordByID command
User Record Data n* 1* The length and type of user record data returned depend on the

“what” field in the command received. See Table 3.
Total Data length (1 + n)* Max-Data-field-payload (632*) bytes or less

If the “what” portion of the user record to be returned spans multiple packet fragments, the Host should issue
a zero-length command (see Appendix B) after receiving the first packet fragment to signal the FKT for the
next packet fragment, the format of the Data field for the subsequent and the last GetUserRecordByID
response packet fragment is as follows:

 9

GetUserRecordByID (subsequent and last response packet from FKT) Data field format:

Field Bytes Offset Description
User Record Data n* 0* Remaining user record data. The length and type of user record

data returned depend on the “what” field in the command
received. See Table 3.

Total Data length n* Max-Data-field-payload (632*) bytes or less

* The values and offsets of the fields described in the Data field format table(s) above are in their un-
encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the User ID does not exist, or the database is empty, the FKT issues a NAK response
accompanied by a reason (See Appendix A for details).

Get Next User Record (0x33)
This command is used to get the next user or the next new/modified user record in the database, possibly
increment the user database iterator and return the next user record, depending on “what” is specified. Note:
The type of (any or new/modified) user record returned depends on which initial ResetIterator sent from the
Host previously. The series of this command should be bracketed by the Idle command and the Resume
command to ensure the FKT is idle to perform this (possibly) lengthy operation.

GetNextUserRecord (command packet from Host) Data field format is as follows:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x33* GetNextUserRecord command
Sequence Number 2* 1* The Sequence number is simply an unique number used for

positive acknowledge between the Host/Master FKT and the
remote FKT. It may or may not have any relationship with how
the user database is tracked internally. See section Note 2, and
Tables 4 and 5 for usage in various scenarios.

0xFFFF*: Request FKT to Reset its internal iterator type (per
the user-record-attribute-mask in the “what” field that follows).

Other value*: The Host receives the previous user record with
no error, and the FKT is to return the next user record.

what 1* 3* what fields of the user record to be returned. See Table 3.
Total Data length 4*

If the database is not empty, the FKT returns the portion (specified by “what”) of the user record. If the
“what” portion of the user record to be returned fits in 1 packet fragment, the format of the Data field in the
first (and also last) GetNextUserRecord response packet (from FKT) is as follows:

GetNextUserRecord (first response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x33* GetNextUserRecord command
User Record Data n* 1* Remaining user record data. The length and type of user record

data returned depend on the “what” field in the command
received. See Table 3.

Total Data length (1 + n)* Max-Data-field-payload (632*) bytes or less

 10

If the “what” portion of the user record to be returned spans multiple packet fragments, the Host should issue
a zero-length command (see Appendix B) after receiving the first packet fragment to signal the FKT for the
next packet fragment, the format of the Data field for the subsequent and the last GetNextUserRecord
response packet fragment is as follows:

GetNextUserRecord (subsequent and last response packet from FKT) Data field format:

Field Bytes Offset Description
User Record Data n* 0* Remaining user record data. The length and type of user record

data returned depend on the “what” field in the command
received. See Table 3.

Total Data length n* Max-Data-field-payload (632*) bytes or less

* The values and offsets of the fields described in the Data field format table(s) above are in their un-
encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the database is empty or it is end of record retrieval, the FKT issues a NAK response
accompanied by a reason (See Appendix A for details).

When the “what” portion of a user record is returned, it is returned with a unique sequence number prefixed to
it as follows:

struct GetUserRecordHeader1Response
{
 uint16 sequence_num; // Unique sequence number for positive acknowledgement
 struct Header1 header_1;
}

struct GetUserRecordResponse
{
 uint16 sequence_num; // Unique sequence number for positive acknowledgement
 struct Fp_UserRecord UserRecord;
}

struct GetUserRecordOneTemplateResponse
{
 uint16 sequence_num; // Unique sequence number for positive acknowledgement
 struct Fp_Template template;
}

struct GetUserRecordBothTemplatesResponse
{
 uint16 sequence_num; // Unique sequence number for positive acknowledgement
 struct Fp_Template template1;
 struct Fp_Template template2;
}

The “what” field is divided into upper and lower-nibble fields. The lower-nibble field specifies the type of
user record, and the upper-nibble field specifies the portion of the user record to be returned. The type and
portions of the user record to be returned or to be set are according to the following table:

 11

Table 3: “what” Field Definitions

Bits What is Returned (Get) or Set

0..3 User Record Attribute Mask
0 = Any user record to be returned.
1 = Modified user record ONLY to be returned.
2..15 = TBD

4..7 User Record Portion Mask
0 = Entire user record (GetUserRecordResponse, SetUserRecord)
1 = Only the Header_1 (GetUserRecordHeader1Response, SetUserRecordHeader1)
2..15 = TBD

This table may be modified as needed to make the most sense. Perhaps there are only two cases that really
need consideration: the entire user record and just the header portion.

Note 1: USER_REC_MOD usage.

When the USER_REC_MOD bit is set in SysStat0 byte, the Host is alerted of this bit by a periodic
StatusPoll command to the FKT. For example, to retrieve all modified (Entire) user record(s), the Host
will need to initially request the FKT to go into Idle mode to disable any future activities at the local
FKT. It then issues the GetNextUser <0xFFFF> <what = 0x01> command to reset the iterator to the first
new/modified user record in the user database, and subsequently issues the GetNextUser <0xnnnn>
<what=0x01> command to retrieve the next new/modified user record in the database until there is no
more new user record, at which time the FKT will respond with a NAK. Finally, the Host will issue the
StatusClear to clear the USER_REC_MOD bit in SysStat0 byte, and then the Resume command to tell
the FKT to resume local operation.

Note 2: GetNextUserRecord command usage.

The GetNextUserRecord is used to get (modified or just any) user record(s) in a series. The sequence
starts by the Host getting the first (modified or any) user record, and followed by getting the next
(modified or any) user record(s) until the end of user record is reached in the database. These scenarios
are summarized in Table 4 and 5 respectively.

Table 4: Get First (modified or any) User Record Scenarios with the GetNextUser Command

Scenario Host/Master FKT Slave FKT
4.1 Get First user record ----------->

(GetNextUser<0xFFFF><what>)

Response received okay
(Go to (5.1))

Command received okay. It is a reset to get the First (modified
or any) user record.

<---------- Responds with First user record
 (<GetNextUserRecord><SNi><data…>)

4.2 Get First user record -----------x
(GetNextUser<0xFFFF><what>)

Response not received (Timeout)
(Go back to (4.1) to request again)

Command not received at all or CRC error

 12

4.3 Get First user record ----------->
(GetNextUser<0xFFFF><what>)

Response not received (Timeout)
or
CRC error
(Go back to (4.1) to request again)

Command received okay. It is a reset to get the First (modified
or any) user record.

x---------- Responds with First user record
 (<GetNextUserRecord><SNi><data…>)

4.4 Get First user record ----------->
(GetNextUser<0xFFFF><what>)

Response received okay. Host
stops sending GetNextUser
command.

Command received okay. But user database is EMPTY.

<---------- Responds with NAK
 (<NAK><GetNextUserRecord> <DbaseEmpty>)

Table 5: Get Next (modified or any) User Record Scenarios with the GetNextUser Command

Scenario Host/Master FKT Slave FKT
5.1 Get Next user record ----------->

(GetNextUser< SNi,j,k,…><what>)

Response received okay
(Repeat (5.1) with SNj,k, …

Command received okay. Previous response is confirmed
being received.

<---------- Responds with Next user record
 (<GetNextUser><SNj,k,…><data…>)

5.2 Get Next user record -----------x
(GetNextUser< SNi,j,k,…><what>)

Response not received (Timeout)
(Go back to (5.1) to request again)

Command not received at all or CRC error

5.3 Get Next user record ----------->
(GetNextUser< SNi,j,k,…><what>)

Response not received (Timeout)
or CRC error
(Go back to (5.1) to request again)

Command received okay. Previous response is confirmed
being received.

x---------- Responds with Next user record
 (<GetNextUserRecord>< SNj,k,…> <data…>)

5.4 Get Next user record ----------->
(GetNextUser< SNi,j,k,…><what>)

Response received okay. Host can
decide how to proceed, for
example, back to (4.1) again to
reset to beginning of user record
database.

Command received okay. But sequence number is
mismatched.

<---------- Responds with NAK
 (<NAK><GetNextUserRecord >

<SeqNumMismatched>)

5.5 Get Next user record ----------->
(GetNextUser< SNi,j,k,…><what>)

Response received okay. Host
stops sending GetNextUser
command.

Command received okay. But, it is the end of the (modified or
any) user record in database.

<---------- Responds with NAK
 (<NAK><GetNextUserRecord >

<EndOfUserRecord>)

Where SNi , SNj and SNk are unique sequence numbers assigned during user record retrieval, and are
such that Ti < Tj < Tk < … over the retrieval time.

 13

Put User Record (0x34)
This command is very similar to the Get User Record By ID command in reverse… This command should be
bracketed by the Idle command and the Resume command to ensure the FKT is idle before sending the
“what” and User Record Data fields; the Idle command also serves as an indicator to the FKT firmware NOT
to mark the User_Record_Status bit in the header1_flags (in Header1 data structure) as having been modified,
ie header1_flags will be updated exactly as it is being received.

PutUserRecord command sets the user record with the indicated ID (Null-terminated string) depending on
“what” is specified. Note that the user-record-attribute-mask of the “what” field (See Table 3) is ignored in
the put user record by ID command; only the user-record-portion-mask of the “what” field is relevant.

struct PutUserRecordHeader1
{
 struct Header1 header_1;
}

struct PutUserRecord
{
 struct Fp_UserRecord UserRecord;
}

If the “what” portion of the user record to be set fits in 1 packet fragment, the format of the Data field in the
first (and also last) PutUserRecord command packet (from Host) is as follows:

PutUserRecord (first command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x34* PutUserRecord command
what 1* 1* what fields of the user record are to be set by the FKT
User Record Data n* 2* The length and type of user record data to be set depend on the

“what” field specified in the command received. See Table 3.
Total Data length (2 + n)* Max-Data-field-payload (632*) bytes or less

If the “what” portion of the user record to be set spans multiple packet fragments, after the sending the first
packet fragment, the Host should wait for a zero-length response (see Appendix B) from the FKT to signal for
the next packet fragment, the format of the Data field in the subsequent and the last command packet
fragments is as follows:

PutUserRecord (subsequent and last command packet from Host) Data field format:

Field Bytes Offset Description
User Record Data n* 0* Remaining user record data. The length and type of user

record data returned depend on the “what” field in the
command received. See Table 3.

Total Data length n* Max-Data-field-payload (632*) bytes or less

After receiving the last packet fragment, if the user record does not exist, it will be added only if the “what”
field specifies “Entire User Record”; otherwise, if the user record exists, it will be updated per “what” is
specified. The FKT will return a response after the user record is successfully stored, with the format of the
Data field in the response packet as follows:

PutUserRecord (response packet from FKT) Data field format:

 14

Field Bytes Offset Description
Cmd_Type 1* 0* 0x34* PutUserRecord command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

If the PutUserRecord command cannot be carried out at all, for example if the user database is FULL, the
FKT responds with a NAK accompanied by a reason (See Appendix A for details).

Delete User Record By ID (0x35)
This command deletes an entire user record per user ID.

DeleteUserRecordByID (Command) Data format: Delete the user record with the indicated Null-terminated
ID. This command should be bracketed by the Idle command and the Resume command to ensure the FKT is
idle before sending the ID field.

DeleteUserRecordByID (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x35* DeleteUserRecordByID command
ID 26* 1* 25 ID digits + 1 Null string terminator
Total Data length 27*

DeleteUserRecordByID (Response) Data format: If the user record exists, the command will be carried out,
and the FKT responds with the format of the Data field in the response packet as follows:

DeleteUserRecordByID (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x35* DeleteUserRecordByID command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the user record does NOT exist, or the database is empty, the FKT will return a NAK
accompanied by a reason (See Appendix A for details).

 15

Clear User Database (0x36)
This command erases the entire user database in the FKT and commands the Fingerprint sensor to erase its
database as well. This command should be bracketed by the Idle command and the Resume command to
ensure the FKT is idle. Note that this command currently can take as long as 40 seconds before the FKT
responds back to the Host.

ClearUserDatabase (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x36* ClearUserDatabase command
Total Data length 0

If the command is carried out, and the FKT responds with the format of the Data field in the response packet
as follows:

ClearUserDatabase (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x36* ClearUserDatabase command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Get Setup (0x37)
This command retrieves the reader Setup information from the FKT. This Setup data structure is currently
padded to a 256-bytes data structure and its members are defined as below with default values marked by d:

typedef struct
{
 uint16 setupDataLen; // Length of actual bytes used in setup_data structure
 BYTE service_password[11]; // 10 ASCII digits + 1 Null string terminator (“1” d)
 BYTE setup_password [11]; // (“2” d)
 BYTE management_password[11]; // (“3” d)
 BYTE enrollment_password[11]; // (“4” d)
 BYTE security_password[11]; // (“5” d)
 uint16 threshold; // 0-255 (63 d = EER)
 BYTE idLength; // sets maximum ID length to 25 digits + 1 Null string terminator
 BYTE secondary_finger_mode; // 0: Disabled.
 // 1 d: As alternate finger enrollment/verification
 // 2: As duress signal.
 BYTE numberOfTries; // 0, 1, 2, 3 d, 4, 5, number of times an ID can be rejected before
 // being locked out.
 uint16 autoResumeTimeout // 60 .. 300 d .. 65535, FKT auto-resume timeout (in seconds)
 // if timeout value in Idle command is 0 or, the Host
 // fails to send the Resume command.

 16

 Char readyStr[21]; // The Null-terminated ASCII string to be
 // displayed on the front panel.
 BYTE beeperEnable; // 0: Disabled, 1 d: Enabled
 BYTE extLed; // 0 d: LED controlled internally, 1: LED controlled externally
 BYTE extBell; // 0 d: Bell controlled internally, 1: Bell controlled externally
 BYTE readerAddr; // 0-31, valid reader address in binary, (32 d =>Undefined/New
 // reader, so that it would not respond to any commands initially)
 BYTE commType; // Communication channel type
 // 0: None (Stand Alone), 1: RS232, 2: RS485 d, 3: Ethernet
 BYTE baudRate; // RS232/RS485 baud rate select
 // 0: 4.8k, 1: 9.6k d, 2: 19.2.k, 3: 28.8k, 4: 38.4k, 5: 57.6k bps
 BYTE ipAddr[4]; // IP address for Ethernet network: 4 binary bytes,
 // example, (0.0.0.0) d
 BYTE subnetMask[4]; // Subnet mask for Ethernet network: 4 binary bytes,
 // example, (255.255.255.0) d
 uint16 facilityCode; // 0 .. 255 d.. 65535, Facility code
 BYTE output_mode; // 0: Disabled, 1 d: To Wiegand (data stream) device, 2-255:TBD

 // Next are format numbs for card IO; 0 means suppress;
 // negative values have special meanings; real card formats have
 // numbers in range 1-32767. If more than one input format,
 // all must be Wiegand, or all Magstripe, or all Barcode.
 int16 card_synth_fmt; // 1 d, From pad, SC, &C.
 int16 card_out_fmt; // -1 d = Pass thru. Otherwise, synth.
 int16 card_in_fmts[5]; // Up to 5 formats. 75 d, 117 d, 122 d, 256 d, 1 d

 // Global options that can apply to most Wiegand formats:
 BYTE IDoverflo; // 0 d = Suppress output.
 // 1 = Substitute all 1-bits
 // 2 = Subsitute zero
 BYTE IDunknown; // 0 d = Suppress output
 // 1 = Substitute with ID_unk value
 // 2 = Increment by ID_unk value
 // 3 = Toggle all parity bits
 BYTE bioreject; // 0 d = Suppress output
 // 1 = Substitute with bio_fail value
 // 2 = Increment by bio_fail value
 // 3 = Toggle all parity bits
 BYTE duress_act; // 0 = Suppress output
 // 1 = Substitute with sig_duress value
 // 2 d = Increment by sig_duress value
 // 3 = Toggle all parity bits
 int16 ID_unk; // -32767 .. 0 d .. 32767, ID_unk value for case 1 or 2 above
 int16 bio_fail; // -32767 .. 0 d.. 32767, bio_fail value for case 1 or 2 above
 int16 sig_duress; // -32767 .. 0 d.. 32767, sig_duress value for case 1 or 2 above
 BYTE gatewayAddr[4]; // Gateway address for Ethernet network: 4 binary bytes,
 // example, (0.0.0.0) d

 uint16 site_ID; // Site ID for keypad output
 uint16 company; // Company code for keypad output
 uint32 expiry; // Expiry for keypad output
 uint16 issue_code; // Issue code for keypad output
 BYTE reserved[116]; // Reserved for FKT Setup expansion

 17

} SETUP_DATA;

Note: Empty characters in the string field should be cleared. For example, if the service_password string
is “4”, then service_password[0] = 0x34, and service_password[1] .. service_password[10] should contain
0. This applies to password and ready strings.

GetSetup (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x37* GetSetup command
Total Data length 1*

The FKT responds by sending back its SETUP_DATA information to the Host as follows:

GetSetup (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x37* GetSetup command
Setup Data 256 bytes of SETUP_DATA 1* See SETUP_DATA structure definition
Total Data length 257*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters. Initially, the FKT will
support sending the entire SETUP_DATA structure to the Host.

Set Setup (0x38)
Store a new/modified reader Setup in the FKT.

SetSetup (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x38* SetSetup command
Setup Data 256 bytes of SETUP_DATA 1 See SETUP_DATA structure definition
Total Data length 257*

SetSetup (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x38* SetSetup command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters. Initially, the FKT will
support setting the entire SETUP_DATA structure from the Host.

 18

Note if any network parameters, such as the reader address, comm. type, baud rate, IP address and subnet
mask are changed in the Setup data, the reader should be reset.

Idle (0x39)
Put the FKT in Idle Mode. When the FKT is in Idle Mode it does not respond to any keyboard inputs. This
command is used prior to loading or clearing the database so that the database is not modified by two different
sources at once (a network Host source and a local user). If the FKT is busy or is already idled for another
Host source at the time of receipt of the Idle command, the Host will receive a NAK response. Otherwise, the
FKT will lock out local keypad access for the duration specified (or upon receipt of the Resume command),
before resuming local access. If the timeout duration is 0, the autoResume timeout value in the reader
SETUP_DATA is used as the default.

Idle (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x39* Idle command
Idle Timeout 2* 1* 2-bytes (uint16) Idle period in seconds.
Total Data length 3*

If the FKT grants Idle mode (FKT_LOCKOUT_FOR_HOST bit in SysStat0 byte will be set), the FKT
responds with the format of the Data field in the response packet as follows:

Idle (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x39* Idle command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the FKT is currently busy, it returns a NAK accompanied by a reason (See Appendix A for
details).

Resume (0x3A)
Request FKT to exit Idle mode and re-enable local keypad and display access.

Resume (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3A* Resume command
Total Data length 1*

 19

The FKT exits Idle mode and resumes its local operation if the Resume command is from the same Host
source as that of the previously-received Idle command. The FKT_LOCKOUT_FOR_HOST bit in SysStat0
byte will be reset, and the FKT responds with the format of the Data field in the response packet as follows:

Resume (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3A* Resume command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

If the Host source of the Resume command is not the same as that of the previously-received Idle command,
the FKT will send a NAK response with FKTIsBusy as the reason.

Get Reader Info (0x3B)
Return the FKT ReaderInfo information. The FKT ReaderInfo Structure is padded to a 256-bytes data
structure and is defined as follows with default values marked by d:

typedef struct
{
 uint16 readerInfoLen // Length of actual bytes used in Reader Info structure
 BYTE model_index; // 0 d = FingerKey-B
 // 1 = FingerKey-A
 // 2 = FingerKey-P
 // 3-255: TBD
 BYTE memoryConfig; // 0 d = 512K Flash, 512K SRAM, 1-255: TBD
 BYTE promDate[21]; // FKT Null-terminated version string.
 // Max 20-chars “MM.mmx date” string, ex. “10.01a 9/26/03”
 BYTE modelName[21]; // Marketing 20-chars + Null terminator string name
 // “RSI FingerKey”*
 uint32 serialNumber; // 4-bytes Binary
 uint16 userCapacity; // Maximum number of users, 50 d
 unit16 usersEnrolled; // Number of users currently enrolled, 0 d
 BYTE sensorType; // Index indicating type of fingerprint sensor used in the FKT
 // 0 d: Type1, 1-255: TBD
 BYTE maxTemplateCount; // Maximum number of templates per user record, 2 d
 uint16 templateSize; // Size of each template, 800 d bytes
 BYTE sensorMemoryConfig; // Index indicating flash memory size of fingerprint sensor
 // 0 d: 4 Megabytes, 1-255: TBD
 BYTE sensorFirmwareVersion[21]; // Fingerprint sensor firmware version string (MM.mmmm)
 BYTE MACAddress[6]; // MAC binary Address of Ethernet board
 BYTE boardRevision; // identifier of board hardware revision, 1 d
 uint16 UserDatabaseVersion; // Current database version in FKT
 BYTE ethernetEnabled; // Ethernet option is purchased and thus enabled for use.
 // 0 d = Not purchased/disabled. 1 = Purchased/Enabled.

 20

 BYTE BootLoaderVersion[21]; // FKT Boot Loader version string
 BYTE reserved[145]; // Reserved for FKT reader info expansion
} FKT_READER_INFO;

GetReaderInfo (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3B* GetReaderInfo command
Total Data length 1*

The FKT returns its ReaderInfo information with the format of the Data field in the response packet as
follows:

GetReaderInfo (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3B*GetReaderInfo command
FKT_Reader_Info
Data

256 bytes of
FKT_READER_INFO

1* See FKT_READER_INFO data structure
definition

Total Data length 257*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Get Time (0x3C)
Get the current time registered in the FKT.

GetTime (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3C* GetTime command
Total Data length 1*

The FKT returns the time information with the format of the Data field in the response packet as follows:

GetTime (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3C* GetTime command
Seconds 1* 1* Seconds (0 – 59)*
Minutes 1* 2* Minutes (0 – 59)*
Hours 1* 3* Hours (0 – 23)*
Date 1* 4* Date (0 – 31)*
Month 1* 5* Month (1 – 12)*
Year 1* 6* Year (2000 base, 0 – 99)*
Total Data Length 7*

 21

* The values and offsets of the fields described in the Data field format table(s) above are in their un-
encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Set Time (0x3D)
Set a new/modified current time in the FKT.

SetTime (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3D* SetTime command
Seconds 1* 1* Seconds (0 – 59)*
Minutes 1* 2* Minutes (0 – 59)*
Hours 1* 3* Hours (0 – 23)*
Date 1* 4* Date (0 – 31)*
Month 1* 5* Month (1 – 12)*
Year 1* 6* Year (2000 base, 0 – 99)*
Total Data Length 7*

If the command is carried successfully, the FKT responds with the format of the Data field in the response
packet as follows:

SetTime (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x3D* SetTime command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the SetTime command cannot be carried out, for example one of the time/date parameters is out
of range, the FKT issues a NAK response accompanied by a reason (See Appendix A for details).

Note: The real time clock feature is not available in the FingerKey-B product. Therefore, the time and
date will NOT be displayed on the LCD, but the firmware internally still supports these time commands.

Remote Enroll (0x3E)
Start the remote enroll process. Not implement in HandNet-Lite, phase 1.

Remote Verify (0x3F)
Start the remote verify process. Not implement in HandNet-Lite, phase 1.

 22

Beeper control (0x40)
Turn the beeper On for a duration, Off, or sound the beeper n times. When the beeper is turned On, each
beep lasts for the duration (index) specified (duration_index x 50 mSec), and is turned Off for the same
duration before the next beep (if there are more than 1 beeps).

Note: The priority of the beeper control follows the mode set by the “flags” field in the SETUP_DATA
structure.

BeeperControl (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x40* BeeperControl command
Duration (index) of each beep 1* 1* (1-7)* 50 mSec/unit. 0* = Off
Number of beeps 1* 2* (1-15)* beeps. 0* = Off
Total Data Length 3*

If the command is carried out successfully, the FKT responds with the format of the Data field in the response
packet as follows:

BeeperControl (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x40* BeeperControl command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the BeeperControl command cannot be carried out, for example, an invalid beeper duration
index or invalid number of beeps is requested, the FKT issues a NAK accompanied by a reason (See
Appendix A for details).

LED control (0x41)
Turn the selected LED On for a duration, Off, or Flash for a duration.

Note: The priority of the LED control follows the mode set by the “flags” field in the SETUP_DATA
structure.

LEDControl (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x41* LEDControl command

 23

LED Operation Type 1* 1* 0* : Red and Green LEDs Off
1* : Red LED On
2* : Green LED On
3* : Flash Red LED
(4-255)*: Undefined

Flash On/Off Cycle
Time

1* 2* (0..255)*. 50 mSec/unit. Each LED On and Off period is =
(n_units x 50) mSec

LED Operation Duration 1* 3* (0..255)*. Duration in seconds to perform the specified LED
operation before automatically turned off by the FKT (in
case the Host forgets to terminate the LED operation).

Total Data Length 4*

If the command is carried out successfully, the FKT responds with the format of the Data field in the response
packet as follows:

LEDControl (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x41* LEDControl command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the LEDControl command cannot be carried out, for example an undefined LED operation type
is requested, the FKT issues a NAK response accompanied by a reason (See Appendix A for details).

Put Card Format (0x42)
Put Card Format command stores an existing or new card format into the FKT card format database. The
FKT card format data structures are as follows:

// Format-number Conventions--
// 0: Not a format; marks end of list of formats
// negative: Not a format; signifies special usage
// 0-9999: Intrinsic format, available when code installed
// 10000-19999: Downloaded formats
// 20000-29999 Special cases requiring special engineering
// 30000-32767: Temporary, throw-away, not intended to ship
// 30030: (One such that produces a constant result)
// It is further recommended, but NOT required, to use formats
// having the low order 4 digits in range 1-999 for W, 1001-1999
// for M, and 2001-2999 for B. The code shall not utilize this
// distinction for distinguishing amongst B, M, and W.

// Format descriptor encompassing Barcode, Magstripe, and Wiegand

#define WGDGRID 84 //84 bits is big enough for 25-dig ID; of

 24

 //course, may still not be big enough
#define RSI_MAX_WIEGAND_FORMAT_LEN 84

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef BYTE RSI_FK_WIEGAND_FLAGS;
typedef BYTE RSI_FK_WIEGAND_BIT_COUNT;

typedef struct
{

BYTE formatType; // Format type, ‘W’ for Wiegand
WORD formatNum; // Format Number
unsigned char formatName[21]; // Null-terminated card format name string
RSI_FK_WIEGAND_FLAGS flags; // Bit 0: Backwards (retro)
 // Bit 2: BCD
 // Bit 3: Enforce exact number of bits
 // Bit 4: Permutation exists, i.e. use permutation table
RSI_FK_WIEGAND_BIT_COUNT bitCount; // Wiegand Format Length in Bits
BYTE grid[WGDGRID]; // Bit-by-bit description of Wiegand bit stream
BYTE mapping[WGDGRID]; // Permutation table to map Wiegand bit stream

} RSI_FK_WIEGAND_FORMAT;

grid[] Byte Explanation:

For each byte in grid[], the low nibble values are defined as follows:
0 Constant 0 bit
1 Constant 1 bit
2 ID bit
3 Site code bit
4 Don't care bit (ignored on input, 0 if synthesized)
5 Don't care bit (ignored on input, 1 if synthesized)
6 First-pass parity bit
7 Second-pass parity bit
8 Third-pass parity bit
9 Fourth-pass parity bit
10 Site_ID bit
11 Company bit
12 Expiry bit
13 Issue_Code bit
14-15 Reserved for future enhancements

For the bytes in the grid[] that are designated as pass parity bit (i.e. lower nibble value = 6, 7, 8, 9), bits 4,
5, 6 and 7 of the high order nibble indicate the first, second, third, and fourth pass parity bit respectively,
where 0 will indicate even parity, and 1 will indicate odd parity. And for other bytes in the grid[] that are
not designated as a pass parity bit (i.e. lower nibble value ≠ 6, 7, 8, 9), bits 4, 5, 6 and 7 of the high order
nibble indicate whether or not this Wiegand bit will be included in the first, second, third, and fourth pass
parity calculation respectively (0 = excluded in parity calculation for that pass, 1 = included in parity
calculation for that pass). Having more than one grid byte indicated for a given parity bit pass is
improper and will not be allowed. If there are fewer than four parity bits, the high-nibble bit
corresponding to an omitted pass in the grid byte (that is not designated as pass parity bit) should be set to
zero.

Mapping[] Byte Explanation:

 25

The mapping[] array is used only if bit 4 of flags (RSI_FK_WIEGAND_FLAGS) is set, in which case it
represents a permutation applied on input BEFORE the material in grid[] is utilized, and on output, its
inverse is applied AFTER grid[] is utilized, and before the bits are transmitted. Only the first BK
elements of the mapping[] array are used, each of these BK values must be distinct, and each value must
be LT BK. The value in a particular position of mapping[] array represents the 0-based position of the bit
which is to wind up at that position after completion of the permutation (this on input). Note that to
formulate the correct entries for mapping[], you may first number the elements 0, 1, ..., BK-1 and
then perform upon the first BK elements the exact same permutation as is to be performed upon the
original (i.e., input) objects (i.e., bits). If bit 0 of flags is set, the permutation implied by it will be
performed before that of mapping[] on input, and after that of mapping[] on output.

The format of the Data field in the PutCardFormat command packet (from Host) is as follows:

PutCardFormat command Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x42* PutCardFormat command
Card Format Data 194* 1* Content of RSI_FK_WIEGAND_FORMAT
Total Data length 195*

If the card format to be stored exists in the FKT, it will be overridden; if it does not exist and there is room in
the FKT card format database, it will be stored as new. The FKT will respond with the format of the Data
field in the response packet as follows:

PutCardFormat (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x42* PutCardFormat command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

If the PutCardFormat command cannot be carried out at all, for example if the card format database is FULL
or the card format descriptor content is not proper, the FKT responds with a NAK accompanied by a reason
(See Appendix A for details).

Delete Card Format (0x43)
This command deletes the card format specified by the card format number.

DeleteCardFormat (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x42* DeleteCardFormat command

 26

Card Format Number 2* 1* Card Format (number) to be deleted
Total Data length 3*

DeleteCardFormat (Response) Data format: If the specified card format exists, the command will be carried
out, and the FKT responds with the format of the Data field in the response packet as follows:

DeleteCardFormat (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x43* DeleteCardFormat command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the card format does NOT exist, or for other reasons that it cannot be deleted, the FKT will
return a NAK accompanied by a reason (See Appendix A for details).

Clear Card Format Database (0x44)
This command clears all (user-defined) card formats in the FKT. Built-in card formats are NOT cleared.

ClearCardFormatDataBase (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x44* ClearCardFormatDataBase command
Total Data length 1*

ClearCardFormatDataBase (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x44* ClearCardFormatDataBase command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

• The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Get Next Card Format (0x45)
This command is used to get the next card format (both built-in and user-defined) in the FKT card format
database. Its operation is very similar to that of the GetNextUserRecord command. The Host would normally
initiate this command with an initial card format number = 0xFFFF to instruct the FKT to start retrieving card

 27

format from the beginning of the card format database. If a card format exists in the database, the content of
the card format descriptor will be returned to the Host. The Host would follow by subsequent
GetNextCardFormat command(s) with the previously-received card format number from the FKT as an
indication of it receiving the last card format successfully, and as a request for the next card format. If the end
of the card format database is reached, the FKT will return a NAK response with the EndOfCardFormat as the
reason.

GetNextCardFormat (command packet from Host) Data field format is as follows:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x45* GetNextCardFormat command
Card Format Number 2* 1* The card format number of the last successfully-received card

format, or restart from the beginning of the card format database.

0xFFFF*: Request FKT to start retrieving card format from the
beginning of the card format database.

Other card format value*: The last successfully-received card
format, and the FKT is to return the next available card format.

Total Data length 3*

If the card format database is not empty, the FKT returns the content of the (next) card format descriptor. The
format of the Data field in the GetNextCardFormat response packet (from FKT) is as follows:

GetNextCardFormat (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x45* GetNextCardFormat command
Card Format Data 194* 1* Content of RSI_FK_WIEGAND_FORMAT
Total Data length 195*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

Otherwise, if the card format database is empty or it is end of card format retrieval, or the previously
sent/received card format number is mismatched, the FKT issues a NAK response accompanied by a reason
(See Appendix A for details).

FKT Soft Reset (0x46)
The FKT Soft Reset command causes the FKT to perform a soft reset of the system. The Host normally sends
this command to cause one or more system setup parameters to take effect, or to re-synchronize with the FKT.
The Host should also send the Idle command (and receives a successful Idle response) before sending the
FKTSoftReset command to ensure that it is okay to reset the FKT. The FKT delays about 100 msec before
resetting the system to allow for the transmission of the FKTSoftReset response to the Host.

FKTSoftReset (command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x46* FKTSoftReset command
Total Data length 1*

 28

The FKT responds to the FKTSoftReset command as follows:

FKTSoftReset (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x46* FKTSoftReset command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

FKT Diagnostic Command (0x7E)
The FKT Diagnostic Command is a special command used strictly for internal control.

FKTDiagCmd (first command packet from Host) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x7E* FKTDiagCmd command
FKTDiagCmd data bytes n* 1* FKTDiagCmd data bytes
Total Data length (1 + n)* Max-Data-field-payload (632*) bytes or less

If the FKTDiagCmd data bytes spans multiple packet fragments, after the sending the first packet fragment,
the Host should wait for a zero-length response (see Appendix B) from the FKT to signal for the next packet
fragment, the format of the Data field in the subsequent and the last command packet fragments is as follows:

FKTDiagCmd (subsequent and last command packet from Host) Data field format:

Field Bytes Offset Description
FKTDiagCmd data bytes n* 0* Remaining FKTDiagCmd data bytes
Total Data length n* Max-Data-field-payload (632*) bytes or less

After receiving the last packet fragment, the FKT responds, if the command is performed successfully and NO
other data is to be returned, with the format of the Data field as follows:

FKTDiagCmd (response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x7E* FKTDiagCmd command
SysStat0 1* 1* See Table 2
SysStat1 1* 2* Reserved = 0*
SysStat2 1* 3* Reserved = 0*
Total Data length 4*

If the FKTDiagCmd command is performed successfully and there is data to be returned, the FKT responds
with the format of the Data field as follows:

 29

FKTDiagCmd (first response packet from FKT) Data field format:

Field Bytes Offset Description
Cmd_Type 1* 0* 0x7E* FKTDiagCmd command
Diagnostic data n* 1* The length and type of diagnostic data returned varies.
Total Data length (1 + n)* Max-Data-field-payload (632*) bytes or less

If the diagnostic data to be returned spans multiple packet fragments, the Host should issue a zero-length
command (see Appendix B) after receiving the first packet fragment to signal the FKT for the next packet
fragment, the format of the Data field for the subsequent and the last FKTDiagCmd response packet fragment
is as follows:

FKTDiagCmd (subsequent and last response packet from FKT) Data field format:

Field Bytes Offset Description
Diagnostic data n* 0* Remaining diagnostic data. The length and type of diagnostic

data returned varies.
Total Data length n* Max-Data-field-payload (632*) bytes or less

If the FKTDiagCmd command fails, the FKT returns a NAK response with the generic FKTDiagCmdFailed
reason in the Data field as follows:

Field Bytes Offset Description
NAK 1* 0* = 0x15* NAK response.
Failed Cmd_Type 1* 1* 0x7E* FKTDiagCmd command
Reason 1* 2* Generic FKTDiagCmdFailed error code

Total Data Length 3*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters.

 30

Appendix A

NAK response
The FKT may issue a NAK response to a command instead of a normal response, as an indication of an error
or a lack of data to be returned. The NAK response has the following form:

<Fluff><Response Sync><Address><TotalPackets><PacketNum><Length><Data><CRC><Fluff>

where:
<Fluff>, <Response Sync>, <Address> and <CRC> fields as described in Appendix B.
<TotalPackets> = 0x31 (1 packet fragment)
<PacketNum> = 0x31 (packet fragment # 1)
<Length> = 0x30, 0x30, 0x30, 0x33 (3 encoded as Ascii-Hex chars)
<Data> field format consists of:

Field Bytes Offset Description
NAK 1* 0* = 0x15*. Provides a way for the Host/Master to check

quickly if the command has been performed. If a command
is not performed, the failed command type and reason (See
Table 6) are also returned in the NAK response.

Failed Cmd_Type 1* 1* (0x30 – 0x7E)*
Reason 1* 2* See Table 6 and internal control document

Total Data Length 3*

* The values and offsets of the fields described in the Data field format table(s) above are in their un-
encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt. There are length bytes but 2*length ASCII-HEX characters

Table 6 “Reason” definitions in a NAK response

This is a preliminary list of reasons that the FKT returns in the NAK response for a given Host command.

enum NAK_REASON
{
 NoNak = 0,
 StatusClearInvalid ,
 WhatFieldInvalid,
 UserRecordBytesInvalid,
 EndOfUserRecord,
 SeqNumMismatched,
 UserIDInvalid,
 UserIDNotFound,
 SensorReadTemplateErr,
 SensorWriteTemplateErr,
 DBaseIsFull,
 SetupBytesInvalid,
 FKTIsBusy,
 NoIdleRecvPreviously,
 TimeDateParamInvalid,
 BeeperParamInvalid,
 LedParamInvalid,
 FKTDiagCmdFailed,

 31

 UnexpectedResponseCode,
 EthernetNotEnabled,
 CardFormatInvalid,
 CardFormatDBaseFull,
 CardFormatDeleteFailed,
 CardFormatNumMismatched,
 EndOfCardFormat
};

Reason Associated Command Type (s) Description
NoNak None When the command is carried out

successfully, the FKT normally
responds with the current system status
bytes. So, NoNak is never returned
when the Host command is successfully
performed.

StatusClearInvalid StatusClear Status requested to be cleared is not
defined

WhatFieldInvalid GetUserRecordByID
GetNextUserRecord
PutUserRecord

Undefined “what” field requested

UserRecordBytesInvalid PutUserRecord Number of user record data bytes
received does not match the size of the
data structure specified by the “what”
field.

EndOfUserRecord GetNextUserRecord End of (modified/any) user record
retrieval in user database

SeqNumMismatched GetNextUserRecord Confirmation sequence number not
matched

UserIDInvalid GetUserRecordByID
PutUserRecord
DeleteUserRecordByID

Bad or invalid User ID string

UserIDNotFound GetUserRecordByID
PutUserRecord
DeleteUserRecordByID

User ID does not exist in database

SensorReadTemplateErr GetUserRecordByID
GetNextUserRecord

Error occurred while retrieving
template(s) from sensor

SensorWriteTemplateErr PutUserRecord Error occurred while writing
template(s) to sensor

DBaseIsFull PutUserRecord Database has reached the maximum
FKT user capacity. Cannot add more
user record(s)

SetupBytesInvalid SetSetup Number of setup data bytes received
does not match size of setup_data
structure

FKTIsBusy Idle
Resume
GetUserRecordByID
DeleteUserRecordByID
GetNextUserRecord
ClearUserDatabase

FKT is currently busy and cannot carry
the requested command.

 32

NoIdleRecvPreviously GetUserRecordByID
GetNextUserRecord
PutUserRecord
DeleteUserRecordByID

Idle was not received before receipt of
one of these commands.

TimeDateParamInvalid SetTime One or more time/date parameters is
out of range

BeeperParamInvalid BeeperControl Beep-duration/num beeps are invalid
NbeepsInvalid BeeperControl Number-of-beeps is out of range
LedParamInvalid LEDControl Undefined LED operation requested
UnexpectedResponseCode Any Host Command/Operation An unexpected error/code occurred

when a Host command/operation is
carried out by a subsystem module.

EthernetNotEnabled SetSetup This error code is returned when the
commType in the setup data structure is
set to Ethernet, and the Ethernet option
has not been purchased yet.

FKTDiagCmdFailed FKTDiagCmd Generic failure code for the FKT
diagnostic command

CardFormatInvalid

PutCardFormat Card format descriptor content is
invalid.

CardFormatDBaseFull PutCardFormat FKT card format database is full, thus
cannot add (new) card format.

CardFormatDeleteFailed DeleteCardFormat FKT cannot delete specified card
format.

CardFormatNumMismatched GetNextCardFormat Mismatch of previously sent/received
card format number.

EndOfCardFormat GetNextCardFormat End of card format retrieval in the FKT
card format database.

nn-255 Reserved TBD

 33

Appendix B

This appendix describes the structure of the commands and responses to and from the FKT.

Command/Response Protocol Structure
The commands to the FKT and the responses from the FKT have similar formats. The main difference
between the two data streams is the value in the sync field.

Commands from the Host to the FKT take the following form:
<Fluff><Command Sync><Address><TotalPackets><PacketNum><Length><Data><CRC><Fluff>

Responses from the FKT to the Host take the following form:
<Fluff><Response Sync><Address><TotalPackets><PacketNum><Length><Data><CRC><Fluff>

Regardless of the network media, RS485/RS232 or Ethernet (and IrDA), these same command and response
packets are intended to work transparently. Currently, the Ethernet protocol stack shipped with the FKT does
not support fragmentation and reassembly of large application packets. Although the embedded stack
supports an Ethernet Maximum Segment Size (MSS) of 1460 bytes (1500 bytes – 40 bytes TCP/IP header),
some Hosts may use a MSS of 1300+ bytes. For now, we will choose to use a TCP/IP data payload of 1280
bytes to transport the RSI FKT Host commands. The actual maximum number of payload bytes in the Data
field of the RSI FKT Host Command protocol is then as follows:

Command/Response Packet pre-header bytes:
Fluff(1)+Cmd/Resp Sync(3)+Address(1)+TotalPackets(1)+PacketNum(1)+Length(4 Ascii-Hex chars) = 11 bytes

Command/Response Packet post-header bytes:
CRC(4 Ascii-Hex chars)+Fluff(1) = 5 bytes

 Overhead = 16 bytes

Max-Data-field-payload = 1280 – 16 (overhead) = 1264 (Ascii-Hex) chars (or 632 binary bytes)

Since the amount of data transfer in fingerprint template management can be more than 1280 bytes, these
original Data blocks can span multiple command/response packet fragments. Thus, the TotalPackets and
PacketNum fields are introduced to take care of breaking down these large Data blocks into packet fragments
and reassembling them for the upper applications. The following paragraphs describe each field of the
command and response packets for Data blocks that can be transferred in a single packet or must be
transferred in multiple packet fragments.

<Fluff> bytes are 0xFF. These bytes are not to be trusted. They may or may not be present. They may or may
not be 0xFF upon receipt. Their sole purpose is to put plenty of “stop” bits on the line in the case of an RS485
link when the line is “turned around”. These bytes are not needed by the receiver state machine in the FKT
but must be generated by the Host transmitter.

<Command Sync> are the three bytes <0x0C 0x0A 0x3E>. These bytes are chosen so that devices running
the old protocol will not be triggered into action from a new protocol command and the FKT’s receiver state
machine will not be triggered from a command nor a response on the old protocol. Even though 0x3E is a
valid Hand Reader address, it is an unlikely address. Most Hand Readers are addressed in the range 0x00 to
0x1F.

<Response Sync> are the three bytes <0x0D 0x0A 0x3E>. These bytes are chosen so that devices running the
old protocol will not be triggered into action from a new protocol command and the FKT’s receiver state

 34

machine will not be triggered from a command nor a response on the old protocol. Even though 0x3E is a
valid Hand Reader address, it is an unlikely address. Most Hand Readers are addressed in the range 0x00 to
0x1F.

<Address> is the value 0x30 to 0x4F – exactly 32 possible values.

<TotalPackets> has the value 0x30 to 0x33 for 0 to 3 packet fragments. These values are derived depending
on the size of the original Data block being transferred. If the original Data block (binary) bytes size is less
than/equal to the Max-Data-field-payload, then the value of TotalPackets is just 0x31 for 1 packet
(fragment); otherwise it can be calculated as follows:

Example:
Currently, the largest message is PutUserRecord, its original Data block (binary) byte size is:

PutUserRecord Cmd(1)+UserID(26)+what(1)+FpUserRecord(1646) = 1674 (binary) bytes
TotalPackets = (1674 +(632-1))/632 = 3 (or 0x33) packet fragments.

Note: When a command/response packet having TotalPackets = 0x30 (0 packet fragment), PacketNum
= 0x31..0x33 (packet fragment # 1 to 3) and Length = 0x30, 0x30, 0x30, 0x30 (0 length Data field
bytes), the packet is interpreted as the signal from the Host/FKT ready for the next packet fragment
(indicated by PacketNum).

<PacketNum> has the value 0x31 to 0x33 for packet # 1 to 3. Normally, the value of PacketNum is from
0x31 to 0x33 for packet (fragment) # 1 to 3, depending on the size of the original Data block being
transferred. If the original Data block (binary) bytes size is less than/equal to the Max-Data-field-payload, the
value of PacketNum is then just 0x31 for packet fragment # 1. Otherwise it can be 0x31 to 0x33 for packet
fragment # 1 to 3.

Note: When a command/response packet having PacketNum = 0x31..0x33 (packet fragment # 1 to 3)
TotalPackets = 0x30 (0 packet fragment) and Length = 0x30, 0x30, 0x30, 0x30 (0 length Data field
bytes), the packet is interpreted as the signal from the Host/FKT ready for the next packet fragment
(indicated by PacketNum).

<Length> consists of four ASCII-HEX characters representing a 16-bits binary value (high byte first) of data
bytes in the packet (fragment); it can be <0x30, 0x30, 0x30, 0x30> to <0x30, 0x32, 0x44, 0x32> for 0 to 632
(Max-Data-field-payload) Data field bytes. Note that this Length field is ASCII-HEX encoded, as are all data
bytes in the Data field that follows. The Length refers to the bytes of data, not the number of ASCII-HEX
(Data field) characters. The number of ASCII-HEX (Data field) characters transmitted is equal to twice the
data length because each Data field byte is transmitted as two ASCII-HEX characters, most significant nibble
first.

Note: When a command/response packet having Length = 0x30, 0x30, 0x30, 0x30 (0 length Data field
bytes), TotalPackets = 0x30 (0 packet fragment) and PacketNum = 0x31..0x33 (packet fragment # 1 to
3) the packet is interpreted as the signal from the Host/FKT ready for the next packet fragment (indicated
by PacketNum).

<Data> consists of <Length x 2> ASCII-HEX characters representing <Length> bytes (possibly zero bytes)
of binary data. If the original Data block (binary) bytes size is less than/equal to the Max-Data-field-payload,
the Data field for packet fragment # 1 (and also the last) will contain the following:

Field Bytes Offset Description
Cmd_Type 1* 0* (0x30 to 0x7E)* -- exactly 79 possible values. These

command type values correspond to the values next to the
command description.

 35

data n* 1* n data bytes
Total Data Length (1 + n)* Max-Data-field-payload (632*) bytes or less

If the original Data block (binary) bytes size is greater than the Max-Data-field-payload, there will be more
than 1 packet fragments, and the Data field for the subsequent and the last packet fragments will just contain
data bytes as follows:

Field Bytes Offset Description
data n* 0* n data bytes
Total Data Length n* Max-Data-field-payload (632*) bytes or less

* The values and offsets of the fields described in the Data field format table(s) above are in their un-

encoded form for the ease of reading. They will be (Ascii-Hex) encoded for transmission and decoded
upon receipt.receipt. There are length bytes but 2*length ASCII-HEX characters.

In particular, if the packet fragment is not the first nor the last packet fragment, its Data field should
have Max-Data-field-payload bytes, whereas the Data field in the first and the last packet fragment can
have Max-Data-field-payload bytes or less.

<CRC> consists of four ASCII-HEX characters representing the 16-bits CRC value (high byte first)
calculated over all of the data in the packet starting with <Sync> field and ending at the last data byte. The
CRC polynomial used is CRC-CCITT. The high byte of the CRC is stored first. The CRC is stored in ASCII-
HEX format. The CRC is calculated over the binary data not the ASCII-HEX form of the data. The receiver
should always convert the ASCII-HEX data to binary before storing in the receive buffer and before adding to
the CRC.

Zero-Length Command/Response Packets
As described in the above section, when TotalPackets = 0x30, PacketNum = 0x31..0x33, and Length =
0x30, 0x30, 0x30, 0x30, these command/response packets are designated as the signal from the Host/FKT for
the next packet fragment (indicated by PacketNum).

Signal from the Host to the FKT for next packet fragment:
<Fluff><Command Sync><Address=FKT address><TotalPackets=0x30><PacketNum=0x31..0x33><Length=0x30
0x30 0x30 0x30><CRC><Fluff>

Signal from the FKT to the Host for next packet fragment:
<Fluff><Response Sync><Address=0xFF><TotalPackets=0x30><PacketNum=0x31..0x33><Length=0x30 0x30
0x30 0x30><CRC><Fluff>

ASCII-HEX format
Length, Data, and CRC information is stored in ASCII-HEX format. The length and CRC fields are 16-bit
fields whereas the Data field is considered to be an array of 8-bit fields.

Each source byte is converted to two ASCII characters before transmission. Each character represents 4 bits of
the value. The first of the two bytes is the high nibble and the second is the low nibble.

Example 1: 0x47 is converted to the two ASCII characters 0x34 0x37 or ‘4’ ‘7’.

Example 2: 0x1234 is converted to the four ASCII characters 0x31 0x32 0x33 0x34

Example 3: 0xAF is converted to the two ASCII characters 0x41 0x46 or ‘A’ ‘F’.

 36

The intent of this format is two-fold: first we don’t want to transmit any characters that could possibly
interfere with the old protocol. Avoiding all control (non-printable) characters does this. Second, since we’re
sending everything in printable ASCII characters we’d like to be able to read and understand the message
without having to write a program to interpret the protocol. A dumb terminal program will be sufficient to
read transmissions.

Endian-ness
We choose High Byte Endian format because it is convenient for this processor/compiler combination as well
as being “right-reading” on a dumb terminal.

 37

Appendix C

The FingerKey (Host) Network Command protocol in its current state has been demonstrated to work well on
the RS232/485 media source. However, it is subject to change(s) to have this protocol working on the
Ethernet and on the IrDA media sources as future implementation progresses.

