
Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

1

Panini Vision API Version 3.1
Reference Manual rev. 1

June 30, 2008

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

2

Contents

Overview... ... 5

Device States 8

Device cycle through State description............. ... 9

On Line Mode (Processing Document Mode) 9

Off Line (Diagnostic Mode) 10

Device Parameters Structure........................ ... 11

Compatibility between DeviceParameters options... ... 16

Image and Snippet retrieved structure Description 18

Firmware Parameters Description 18

Pockets Handling 19

Smart Jet 21

True Color 22

MICR+OCR .. 22

Reverse gear 23

Virtual endorsement................................ ... 23

Error Handling 28

USB Errors 29

Device Errors 30

API Errors... ... 32

Sorter Errors 33

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

3

Function Calls..................................... .. 35

VisionAPI layers Functions 35
VApiGetVersion .. 35
VApiSetDeviceEngine... 35
VApiGetError... 36
VApiGetErrorString ... 37
VisionAPI errors .. 37

Device layer functions 38

Information Functions.............................. .. 38
GetApiRelease.. 38
GetDriverRelease ... 38
GetFWVersion .. 39
GetSerialNumber .. 40
ReadCryptedIDCard ... 40

IDCard and capabilities request functions.......... ... 41
GetIDCardDescription... 41
UpgradeIDCard... 42
GetDeviceFeature... 43

Error Request Functions............................ .. 46
GetUsbError.. 46
GetUsbErrorString .. 47
GetDeviceError ... 47
GetDeviceErrorString.. 48
GetApiError ... 49
GetApiErrorString.. 50
GetSorterError .. 50
GetApiErrorString.. 51

Device States Control Functions 52
GetDeviceState... 52
GetDeviceStateString ... 52
StartUp.. 53
ShutDown ... 54
ChangeParameters... 54
OnLine .. 55
OffLine .. 56

Parameters Managing Functions 56
SetSorterParameter .. 56
GetSorterParameter.. 57
SetDeviceParameters ... 58

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

4

GetDeviceParameters... 59
SetImageAdjustment... 59
SetMaxDpm .. 60
GetMaxDpm.. 61
SetAGPLines .. 62
SetFeederLimit.. 62
SetHandDropDly ... 63
GetAvailablePockets... 64
SetMaxPocket... 64
SetVirtualEndorsementProperty.. 65
GetVirtualEndorsementProperty ... 66

On Line Functions 67
IsFeederEmpty.. 67
StartFeeding ... 67
StopFeeding.. 68
FreeTrack.. 69
SetPocket.. 70
GetDocumentLength... 71
GetMicrCodeline ... 72
GetOCRCodeline .. 73
SendPrinterData ... 74
SetVirtualEndorsement ... 77
FreeImageBuffer ... 79
FreeSnippetBuffer... 80

Serial Functions................................... ... 80
Rs232SetBaud.. 81
Rs232Write ... 81
Rs232GetLen.. 82
Rs232Read... 82

Maintenance Functions.............................. .. 83
ReadPrinterDropsCounter... 83
ResetPrinterDropsCounter.. 84
GetPrinterCartridgeInfo ... 84

Magnetic card reader 85
GetMagCardResult ... 86

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

5

Overview

The VisionAPI is the software interface to drive the Panini’s devices. The VisionAPI is the
“standard” API for every machine manufactured by Panini. This API will be able to drive
different kind of machine.
It organizes the software interface in two layers. It’s composed of an “Interface” library and a
“device engine” library that contains the specific code of a specific device.
It’s organized as a set of Microsoft Win32 DLLs.

Panini Vision API has been created to supply our customers’ requests of an easy-to-use and
very specific Interface. In fact, using very simple and direct function calls, every software
programmer is able to use every low level feature of our devices with all the benefits that this
brings (e.g. the complete access to the image options, or the possibility to use our powerful
diagnostic tools using our offline function).
With high level functions it is possible to download the images from the scanners, to
recognize the MICR String, to send string or bitmap to the printer, and so on.

Panini Vision API philosophy is very simple: we provide our C++ header file with the
prototypes of the function, the .dll and the .lib API files. The include file is written and tested
with Visual C++ Microsoft compiler.

The interface is composed of two files.

1. VisionAPI.dll is the software interface exposed to the customers’ application.
2. VxEngine.dll is the “device engine” that manages all the specific operations with the

physical MyVisionX or Vision|X device.
The following chart shows the actual software organization:

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

6

The entire set of file needed to install VisionAPI is composed of the following list of files:

• VisionAPI.dll;
• VxEngine.dll (in the future this file could change to drive other Panini’s devices);
• Baroc.dll (OCR engine, optional);
• AxBar32.dll (Barcode engine, optional);
• PaniniOCR.dll (OCR engine for MICR+OCR, optional);
• PaniniOCRParms folder (data for the PaniniOCR engine, optional);
• PaniniOCR.tbl and Panini.tbl (PaniniOCR configurations, optional);
• PaniniOCR depends on 3 Microsoft libraries: mfc71.dll, msvcp71.dll and msvcr71.dll;
• Microsoft WHQL USB Driver.

The VisionAPI maintains all the functions defined in the previous MyVisionX API library.
Panini will maintain this interface unchanged in order to obtain the application’s backward
compatibility. The interface will change just adding new functions, without modifying the
existing ones.

The exported functions can be grouped in two different set. One group is named as “interface
layer function” and the other is named as “device engine layer functions”. All the functions
are defined in the “VApiInterface.h” header file.
The interface layer functions are named with the prefix VApi- and are the ones related to the
VisionAPI.dll layer.
The device layer functions are related to the engine layer. A Panini device does not necessary
support all the engine functions. A Vision|X device supports all the engine’s functions. In the

Customer’s
software

application

Vision API

Device engine
(VxEngine.dll,...)

WHQL USB
Driver

Vision|X or
MyVisionX device

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

7

future a new device could support a subset of them. If this happens, the not supported
functions will return an error and VisionAPI error “function non available” is set.

The “device” abstraction is substantially a Finite State Machine, in which every state
describes the physical status of the reader. With this assumption, it’s easier to understand the
real behaviour of the machine. The actual state of the Device can be queried at any time using
the GetDeviceStateString function.

The device communicates with the user application by common Windows Messages, which
describes the reader connection status and provide real-time document processing status
notification. Each Panini Vision API application should define its own message handlers,
which will trap all relevant conditions; for this purpose, the usual technique could be defining
and opening an invisible window whose handle will be registered as the messages default
destination.

Panini Vision API will not save or read information to or from any .ini files, just to have no
possible overlapping between what the API does internally and what the customers should do
in their applications. In Panini Vision API philosophy, it’s an application’s responsibility to
store all default parameters and send them to the API when needed.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

8

Device States

The device state can be retrieved with the functions GetDeviceStateString and
GetDeviceState. Here is a brief description of the State of the FSM:

• DeviceShutDown (0): it’s the “not operative” state
• DeviceStartingUp (1): it’s the initialization state of the device, the first reached after

the application calls the StartUp function. This state automatically switches to the next
one when the sorter is connected.

• DeviceChangeParameters (3): this is the state in which it’s allowed to change the
options of the device.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

9

• DeviceOnLine (5): this is the operative state, in which the device can be used to
process documents.

• DeviceOffLine (6): this is the state in which the offline functions (testing motors,
photocell calibration check…) can be called.

• DeviceStandBy (7): this state is forced on and off when the rear button of the device is
pressed for at least a second.

• DeviceFeeding (8): the reader is processing documents.
• DeviceLocked (10): an identification problem occurred, the device is unusable.

Device cycle through State description

The Start Up sequence follows these steps:

1. The device is in DeviceShutDown state.
2. Call the StartUp function, and the Finite State Machine goes in the DeviceStartingUp

state.
3. When the API manages to connect the device, the message

WMPAR_SORTER_CONNECTED is sent to the application message handler and
the current state become DeviceChangeParameters state. If the connection can’t be
obtained, after a while the message DEVICE_ERR_CONNECTION_TIMEOUT is
sent to the application.

4. At this point OnLine or OffLine function can be called and the Device will be forced
to the corresponding state.

The Shut Down sequence can begin from almost every state (except for the DeviceFeeding
State), simply call the ShutDown function and the device will be forced into that state.
Note that a message won’t be sent to confirm that the device is not operative; the
WMPAR_SORTER_DISCONNECTED is sent when the reader is unplugged or there are
problems in the communication.

Press for at least one second the reader’s rear button and the Device is forced into
DeviceStandBy state and the WMPAR_STANDBY message is sent (the LPARAM is TRUE).
To exit this state, press the button again and the device will return to the previous state, the
WMPAR_STANDBY message will be re-sent with the LPARAM set to FALSE.

NOTICE: the driver doesn’t support PC Stand by and Hibernation Mode. So if one of these
events happens it will be necessary to unplug the device and re-plug it again to have the driver
to be reloaded correctly.

On Line Mode (Processing Document Mode)

In order to use the machine in the processing Document Mode, the Device must be in the
DeviceOnLine state (this can be reached using the OnLine function from the

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

10

DeviceChangeParameters state, after the necessary changes to the processing parameters
have been done by the application).

The Feeding Options are selected in the DeviceChangeParameters state and can be set
between “Hand Drop Mode” and “Hopper Feed Mode”, and also between single document
feeding and multi document feeding.

Call StartFeeding function to begin the processing of the documents, StopFeeding to end it;
if the device is working in One Document mode or if an exception occurred, it is not
necessary to call StopFeeding. During the document transport, if a jam occurs, use the
FreeTrack function to eject the document from the track.

The progress of the document in the track is followed by the messages received from the
application as described below:

1. WMPAR_SORTER_NEW_DOCUMENT is sent when the document enters the track,
the LPARAM relates to this message.

2. WMPAR_SORTER_MICR_AVAILABLE is sent when the MICR Codeline has been
fully recognized (if it had been requested), and it is ready for the application to use; to
obtain it call the GetMicrCodeline function. The LPARAM of this message reports
the document number.

3. WMPAR_SORTER_SET_ITEM_OUTPUT is sent when the document is ready to be
pocketed; call the SetPocket function to set the destination pocket (this must be called
even if the reader has only one pocket!). In this state, the data that has to be printed on
the next document must be sent to the API through the function SendPrinterData (see
function definition). The LPARAM of this message reports the document number.

4. WMPAR_SORTER_DOCUMENT_INSIDE_POCKET is sent when the document
has been pocketed. The LPARAM of this message reports the document number.

5. WMPAR_IMAGE_READY is sent when the images from the scanners are available
for the application. LPARAM returns a structure containing the requested images (see
the description of Image and Snippet Structure).

6. WMPAR_SNIPPET_READY is sent when the snippet is ready for the application.
This message will be received twice, the first time for the front snippets, and the
second time for the rear ones; in this way, the front snippets are available very quickly
for OCR recognition without waiting for the rear ones. LPARAM field of this message
is a structure similar to the one used for the images.

7. WMPAR_DOC_COMPLETED is sent when all the processing phases have been
completed. LPARAM is the document number.

Different document messages could be mixed, use the LPARAM to retrieve the document ID
to clearly track the process of the document.

Off Line (Diagnostic Mode)

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

11

All the diagnostic functions must be called in the DeviceOffLine state (that can be reached
using the OffLine function from the DeviceChangeParameters state).
Note: In this release of the Panini Vision API manual OffLine functions won’t be
documented.

Device Parameters Structure

This structure is the way in which the application communicates to the Panini Vision API the
settings of the processing options. Its definition can be found in the header file.
It must be passed to the API in the DeviceChangeParameters state as parameter of the
function SetDeviceParameters. A brief description of all the options of the structure
DeviceParameters follows:

• BOOL bMICREnable : Enabling of the MICR Recognition.
• UINT nMICRFont : Set the MICR font (MICR_FONT_CMC7 for CMC7

documents, MICR_FONT_E13B for E13B documents
or MICR_FONT_AUTO for auto-recognition of both
types of codeline, MICR_FONT_E13B_OCR for E13B
recognition reinforced by a “merge” with an OCR result,
MICR_FONT_CMC7_OCR for CMC7 recognition
reinforced by a “merge” with an OCR result,
MICR_FONT_AUTO_OCR for MICR Automatic
recognition reinforced by a “merge” with an OCR result.

• BOOL bMICRSaveSamples : Save MICR waveform to file (the files will be store in
the directory MICR Waveforms, automatically created
by the API in the working directory). The name of the
file will report the document number and the date it was
written. The file contains, in its header, the recognized
codeline.

• UINT nMICRSpaces : Sets the number of spaces in the MICR codeline.
(SPACES_NONE for no spaces between the check
fields, SPACES_ONE for only one space or
SPACES_ALL for all the spaces on the document).

• char cRejectSymbol : Sets the symbol for reject characters (the default is ‘?’).
This value must be a printable character and cannot be
set to the MICR symbols (digit from ‘0’ to ‘9’, ‘:’, ‘;’,
‘<’, ‘>’, ‘=’).

• UINT nReserved : Must be set to 0.
• BOOL bReserved : Must be set to FALSE.

• IMAGE_PROPERTIES ImagePropertiesFront1 : Image property structure for the

first front image (see description
below).

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

12

• IMAGE_PROPERTIES ImagePropertiesFront2 : Image property structure for the
second front image (see
description below).

• IMAGE_PROPERTIES ImagePropertiesRear1 : Image property structure for the
first rear image (see description
below).

• IMAGE_PROPERTIES ImagePropertiesRear2 : Image property structure for the
second rear image (see
description below).

• SNIPPET_PROPERTIES SnippetProperties[10] : Vector containing the property

structure for the ten available
snippets (see description below).

• BOOL bPrintEnable : Enable the Ink-Jet Printer.
Valid values for this parameters are:
PRINTER_DISABLE (printer disabled);
PRINTER_ENABLE_LEADING (enable printer device
and the position is referred to the leading edge of the
document);
PRINTER_ENABLE_TRAILING (enable printer
device and the position is referred to the trailing edge of
the document).
These three values are defined in the header file.
For the AGP Printer there are available 3 options to
modify the printing quality and decrease the ink
consumption.
The options are the following:
PRINTER_AGP_QUALITY_HIGHQ (it’s the best
quality, 100% of ink used to print);
PRINTER_AGP_QUALITY_NORMAL (about 66% of
ink used to print);
PRINTER_AGP_QUALITY_DRAFT(about 33% of ink
used to print).
Example: bPrintEnable =
PRINTER_ENABLE_LEADING |
PRINTER_AGP_QUALITY NORMAL;
this example enables Printer, with leading edge
alignment and normal printer quality.
To enable the Smart Jet printer the application has to
add to the bPrintEnable field the following flag:
PRINTER_ENABLE_SMART_JET.
Example:
bPrintEnable = PRINTER_ENABLE_LEADING |
PRINTER_AGP_QUALITY NORMAL |

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

13

PRINTER_ENABLE_SMART_JET

• BOOL bOneDoc : if TRUE, just one document will be feed when
StartFeeding has been called.

• UINT nFeedingMode : Select the feeder mode (HOPPER_FEED for Main
Hopper Feeding Mode, i.e. the feeder will recognize if a
document is present, and in negative case return an
error. DROP_FEED for Hand Drop Feeding Mode i.e.
the feeder, even if it is empty, wait for document(s) to
be inserted).

Image property structure description:

• UINT Format : Set the Compression Format. The available image formats are:
FORMAT_NONE for no image
FORMAT_GIV for G4 TIFF image
FORMAT_JPEG for gray-level JPEG image format
FORMAT_BMP for gray-level uncompressed bitmap format
FORMAT_NATIVE_BMP for the gray-level bitmap of the image

as it is retrieved from the scanners before any processing. It’s
intended to be used just for diagnostic purposes.

FORMAT_JPEG_COLOR for color JPEG acquired with Panini
Fast Color Technology.

FORMAT_BMP_COLOR for color bitmap acquired with Panini
Fast Color Technology.

FORMAT_GIV_DROP_OUT_RED for G4 TIFF image acquired
with the drop out of the red color.

FORMAT_GIV_DROP_OUT_GREEN for G4 TIFF image
acquired with the drop out of the green color.

FORMAT_GIV_DROP_OUT_BLUE for G4 TIFF image
acquired with the drop out of the blue color.

FORMAT_BMP_TRUE_COLOR for True Color bitmap
acquired with True Color mode.

FORMAT_JPEG_TRUE_COLOR for color JPEG acquired with
True Color mode.

FORMAT_GIV_DOR_TRUE_COLOR for G4 TIFF image
acquired with True Color mode for red drop out.

FORMAT_GIV_DOG_TRUE_COLOR for G4 TIFF image
acquired with True Color mode for green drop out.

FORMAT_GIV_DOB_TRUE_COLOR for G4 TIFF image
acquired with True Color mode for blue drop out.

FORMAT_GIV_DROP_OUT_IR for G4 TIFF image acquired
with the Infrared light

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

14

Note that the Drop-Out Acquisition is incompatible with color
acquisition and with G4 format, so, for instance, if the first
required image is a FORMAT_GIV_DROP_OUT_BLUE image,
the second can’t be a color image neither a FORMAT_GIV.
Fast color acquisition uses the nominal track speed. The True
Color acquisition needs a track speed set to one third of the
nominal speed.
A DEVICE_ERR_INVALID_PARAMETERS error will be
obtained if not compatible images are requested.

• UINT Paging : Set the paging for the image (PAGING_ONLY_SINGLE for not
including this image in a multi-page Tiff,
PAGING_ONLY_MULTI for including it in the multi-page Tiff
and not as a single image, or PAGING_SINGLE_MULTI for
obtaining the image in each format). Bitmaps will not be included
in the multi-page TIFF.

• UINT Resolution : Set the resolution of the image (100, 200 or 300 DPI are
allowed), if the requested image is a native bitmap, this will be
ignored and the image will always be the maximum (300 DPI for
Vision|X, 200 DPI for MyVisionX). If the required images are
either at the resolution of 100 DPI (for gray acquisition, i.e. no
drop out and no color), they will be acquired with that resolution
from the scanners, with an improvement of the throughput (in
particular with USB 1.1 connection).

• UINT ColorDepth : the number of gray level for the images, it can be set to 16, 64 or
256 grey levels (for color and dropped out images must be set to
256). For historical reason all values are still defined, but the only
supported is 256. If an application sets a different value, it will be
ignored.

• UINT Threshold : Set the Jpeg quality factor for Jpeg images (1-99) or the G4
threshold (1-9). For bitmap images, it won’t be used.

Snippet Property structure description:

• BOOL Enable : Enable snippet.
Valid values for this parameter are:
SNIPPET_DISABLE – Snippet disable
SNIPPET_ENABLE – Snippet enabled
SNIPPET_ENABLE_FOR_DECISION – Snippet enabled for
decision (used to decide pocket and/or to decide printing data
from the image’s information: OCR, ICR, CAR/LAR…)

• BOOL Front : TRUE if the snippet is on the front of the document, FALSE if
it is in the rear.

• Snippet Properties : Snippet structure (see below).

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

15

Snippet Structure description:

• UINT Xposition : X position of the Snippet. Horizontal position referrers to the

LOWER-RIGHT corner for the FRONT side, and to the
LOWER-LEFT corner for the REAR side.

• UINT Yposition : Y position of the Snippet.
• UINT Width : Snippet Width
• UINT Height : Snippet Height
• UINT Orientation : Snippet Orientation (see below what orientation is available).
• UINT Color : Snippet Color (SNIPPET_COLOR_GREY_LEVEL for grey

level bitmap, SNIPPET_COLOR_BLACK_WHITE for
monochromatic bitmap or SNIPPET_COLOR_COLOR for
color bitmap). Note that if the image isn’t acquired in color
mode and a color snippet is required an exception will be fired.

• UINT Compression : Not Implemented.
• BOOL Millimeters : TRUE if the dimensions are in mm, FALSE if they are in mils.

Note: If for both the X position and Y position, Width and Height is set to a zero value, the
returned snippet includes the entire image. If the dimensions exceed the document size, the
snippet will only include the available part of the image. Snippets are always returned in
bitmap uncompressed format.
The orientations are:

• SNIPPET_ORIENTATION_NORMAL : The orientation is the same as the document
(from the upper-left corner, by horizontal scans, to the lower-right corner)

• SNIPPET_ORIENTATION_CCW_90_DEG_ROT : The snippet is vertical, and it is
scanned from the upper-right corner to the lower-left corner, by vertical lines.

• SNIPPET_ORIENTATION_UPSIDE_DOWN: The snippet is horizontal, and it is
scanned from the lower-right corner to the upper-left corner, by horizontal lines.

• SNIPPET_ORIENTATION_CW_90_DEG_ROT: The snippet is vertical, and it is
scanned from the lower-left corner to the upper-right corner, by vertical lines.

• SNIPPET_ORIENTATION_VERTICAL_MIRROR: The orientation is the same as
the document (from the upper-left corner, by horizontal scans, to the lower-right
corner, but stored in memory from the last scan line to the first).

• SNIPPET_ORIENTATION_CCW_90_DEG_ROT_VERT_MIR: The snippet is
vertical, and it is scanned from the upper-right corner to the lower-left corner, by
vertical lines, but stored in memory from the last scan line to the first.

• SNIPPET_ORIENTATION_UPSIDE_DOWN_VERT_MIRROR: The snippet is
horizontal, and it is scanned from the lower-right corner to the upper-left corner, by
horizontal lines, but stored in memory from the last scan line to the first.

• SNIPPET_ORIENTATION_CW_90_DEG_ROT_VERT_MIR: The snippet is
vertical, and it is scanned from the lower-left corner to the upper-right corner, by
vertical lines, but stored in memory from the last scan line to the first.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

16

Compatibility between DeviceParameters options

The following table shows the incompatibilities between images formats.
Image Format Incompatible with…
FORMAT_GIV FORMAT_GIV_DROP_OUT_RED

FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_JPEG -
FORMAT_BMP -
FORMAT_NATIVE_BMP FORMAT_BMP_COLOR

FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_JPEG_COLOR FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_BMP_COLOR FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DROP_OUT_RED FORMAT_GIV
FORMAT_NATIVE_BMP
FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DROP_OUT_GREEN FORMAT_GIV
FORMAT_NATIVE_BMP
FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DROP_OUT_BLUE FORMAT_GIV
FORMAT_NATIVE_BMP
FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN

FORMAT_BMP_TRUE_COLOR FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_JPEG_TRUE_COLOR FORMAT_BMP_COLOR

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

17

FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DOR_TRUE_COLOR FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DOG_TRUE_COLOR FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DOB_TRUE_COLOR FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE

FORMAT_GIV_DROP_OUT_IR FORMAT_GIV
FORMAT_JPEG
FORMAT_BMP_COLOR
FORMAT_JPEG_COLOR
FORMAT_GIV_DROP_OUT_RED
FORMAT_GIV_DROP_OUT_GREEN
FORMAT_GIV_DROP_OUT_BLUE
FORMAT_BMP_TRUE_COLOR
FORMAT_JPEG_TRUE_COLOR
FORMAT_GIV_DOR_TRUE_COLOR
FORMAT_GIV_DOG_TRUE_COLOR
FORMAT_GIV_DOB_TRUE_COLOR

Table 1 - Incompatibilities between 1st and 2nd image format

The Smart-Jet is not allowed when:
• True Color image are requested and the MICR+OCR is enabled;
• True Color image are requested and one or more snippets is enabled with the value

SNIPPET_ENABLE_FOR_DECISION.

A color snippet is not allowed when the image format is different from a color acquisition
(Fast color or True Color).

The virtual endorsement is not allowed when:

- the rear image is disabled;
- Smart-jet is based on a rear snippet.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

18

Image and Snippet retrieved structure Description

On Messages WMPAR_IMAGES_READY and WMPAR_SNIPPETS_READY, the
LPARAM will be pointed to a structure containing the images themselves, and some
information related with them; for a more simple way of managing this, for both snippets and
images the same structure is used. Beware that these structures are allocated internally, and
must be released by the application with FreeImagesBuffer and FreeSnippetBuffer methods.

The following is the description of ImagesStruct structure:

• DWORD DocNumber : the document number.
• CompressedImage * Images : the pointer to a vector of CompressedImage structure:

5 elements for images (in order 1st front image, 2nd front
image, 1st rear image, 2nd rear image and multi-page
TIFF) and 10 for snippets.

• BOOL SnippetFront : only for snippets (TRUE if the snippet is on the front
of the document).

The CompressedImage structure has two members:

• BYTE * pBuffer : the buffer pointer.
• int BufferLen : the length of the buffer for the compressed images or snippets.

If an image is not requested the corresponding buffer pointer is NULL and the buffer length is 0.

Firmware Parameters Description

These parameters are sent to the device with the function call SetSorterParameter, and are
retrieved from it with GetSorterParameter. When the device connects the default values of
the sorter parameters are restored.

The parameters that are available are as following:

• ID = 0 Double-Feeding Detection Enabling (0 – 1, default is 0).
Enable the Double-Feeding Detection.

• ID = 1 Power for Double-Feed Detection (2 – n, default is 5).
Set the power value of the photocell detecting the Double-Feeding. The maximum
value of this parameter depends on the manufacturing calibration.

• ID = 2 Delay For Double-Feed Detection (10 mm – 150 mm from leading edge,
default is 50).
Set the delay from leading edge where the Double-Feeding is tested.

• ID = 3 Confidence for Double-Feed Detection (2 – 10, default is 7).

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

19

Higher indicates greater reliability of detection.
• ID = 4 Hole Filter Length (5 mm – 10 mm, default is 5 mm).

To avoid holes in the paper indicating document end.
• ID = 5 Delay To Start Endorsement (0 mm – 220 mm, default is 0 mm).

Set the delay in print starting, referred to the leading edge of the document.
• ID = 6 Max symbols in MICR code-line (10 – 80, default is 80).

This parameter can reduce the MICR reading length. The value represents the
maximum number of MICR symbols accepted.

• ID = 7 Min document length (80 – 240 mm, default is 80).
This value is the minimum document length accepted.

• ID = 8 Max document length (80 – 240 mm, default is 240).
This value is the maximum document length accepted.

• ID = 9 Enable Full-Pocket detection (0-1, default is 0)
Enables the Full Pocket detection for a My Vision X endowed with 2 pocket. When a
Full Pocket condition is detected, the machine doesn’t stop and the application
receives a DEVICE_ERR_FULL_POCKET exception. It’s an application
responsibility to manage this situation (Stopfeeding call, switch the destination pocket,
User Interface warning…).

Note that the default values for the Double-Feeding detection are optimized for standard
documents and are calibrated during the manufacturing process.

Pockets Handling

This API version is able to manage a device endowed with 2 pockets. With this kind of
machine the application can decide the destination pocket of a document. Basically there are
to manner to decide the document’s destination:

1. using the MICR information;
2. Using the image (OCR, ICR, CAR/LAR…) information.

The pocket is decided by the application calling the API function SetPocket. This function has
to be called during the SET_ITEM_OUTPUT message.

To decide the pocket using the MICR information, the application has to enable the MICR
option. As already explained in this document, when the application receives the
SET_ITEM_OUTPUT message, the application has to call the SetPocket function to decide
the document’s destination pocket. The SET_ITEM_OUTPUT is always sent after the
MICR_AVAILABLE message. Thus, during the SET_ITEM_OUTPUT message, the
application already has the MICR information to decide the pocket.

To decide the pocket using the image information, the application has to enable at least one
snippet for decision. Both the front and the rear side can be used to extract the snippet for
decision. The enable for decision means that the pocket is decided after the image acquisition,
when the snippet is sent to the application. Compressed images cannot be used to decide the

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

20

pocket. To enable the snippet for decision you have to set the Enable field of the
SNIPPET_STRUCTURES to the SNIPPET_ENABLE_FOR_DECISION value.
Enabling this kind of snippet, the API sends the SET_ITEM_OUTPUT message after the
SNIPPET_READY message. Thus, during the SET_ITEM_OUTPUT message, the
application already has the image information (OCR, ICR, CAR/LAR….) to decide the
pocket for the document.

When a snippet is requested with ENABLE only, the sequence of the document messages is:

- NEW_DOC;
- MICR;
- SET_ITEM_OUTPUT;
- IN_POCKET;
- SNIPPET_READY;
- IMAGE_READY;
- DOC_COMPLETE.

Using the ENABLE_FOR_DECISION value the sequence will be:

- NEW_DOC;
- MICR;
- SNIPPET_READY;
- SET_ITEM_OUTPUT;
- IN_POCKET;
- IMAGE_READY;
- DOC_COMPLETE.

It’s important to notice the position of SET_ITEM_OUTPUT and SNIPPET_READY
messages. In the first case the snippet message is considered as a down-stream message (not
used for decision) and is signaled after pocket decision. In the second case it is an up-stream
message (used for decision) and is signaled before the SET_ITEM_OUTPUT that is the
message where the application decides the document’s pocket.

The MICR-based decision permits to the application to maintain the right DPM performance.
The performance could be affected by a very long delay of the application before calling
SetPocket (). The machine cannot feed a new document if the application doesn’t call the
SetPocket () function for the previous one. Then, later is the call and more is the reduction of
the DPM performance.

The 2 pocket machine introduces the reverse gear of the document in the track. In some cases,
the machine needs to retreat the document in the track to complete the operations. If the
application takes a long time to decide the pocket, the machine will stop the document just
after the image capture device waiting for the decision. If the destination is the default pocket,
the machine restarts track moving forward the document in the pocket. If the destination is the
second pocket, the machine makes a reverse gear of the document, stop the motor when the
leading edge is positioned before the mechanical switch, then open the switch and then restart
the motor to put the document in the pocket.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

21

The Image-based decision usually cannot maintain the right DPM (except for MVX 30 DPM).
For example, when the pocket is selected by the image information and the destination pocket
is the second, the device have always to retreat the leading edge of the document, before the
mechanical switch position, and then restart the track to introduce the document in the pocket.

Smart Jet
Smart Jet is a more flexible manner to manage the Printing operations. When the Printer is
used like as an up-stream device, the application has to decide the information to print on the
document before the document is fed.
Instead Smart Jet set the Printer as a down-stream device. This means that the application can
decide the printing information based on the MICR or on the Image information (OCR, ICR,
CAR/LAR…).
To enable this kind of printer the application has to add a new flag
(PRINTER_ENABLE_SMART_JET) inside the bPrintEnable field of the DeviceParameters
structure.

When Smart-Jet is enabled, the application has to call the SendPrinterData function only
during the SET_ITEM_OUTPUT event, before the SetPocket call.
Example

DWORD DocID;
 char ApiErrorString[200];

 case WMPAR_SORTER_SET_ITEM_OUTPUT:
 DocID = (DWORD) LPARAM;

 // When Smart-Jet enabled this function has to b e called
 // only here, before SetPocket() call.
 SendPrinterData(DeviceID, …)

SetPocket(DeviceID, DocID, 1);
break;

To decide the printing data using the MICR the application has to enable the MICR option.

To decide the printing data using the Image the application has to enable has to enable at least
one snippet for decision (explained in Pocket Handling section). Both the front and the rear
side of document can be used to extract the snippet for decision (like for a 2 pocket machine).

The Smart Jet could affect the DPM performance, especially when based on image
information. The Smart Printer could require (surely in case of printing from image) a reverse
gear of the document. This happens when the position of the document is after the printing
position decided by the application. In this case the machine has to retreat the document to
recover the right position and start the printing operation.
There is a mechanical limit for the reverse gear of the document. When the application takes a
very long time to decide the pocket, the machine stops the document in the track after the end

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

22

of the MICR signal acquisition. When the printer data are sent to the My Vision X, the
firmware retreats the document in the track to recover the right printing position, stop the
track, and the restart the motor to make the printing and conclude the document processing. If
the printing position could not be recovered, the firmware signals an ERR_PRINTER error.

True Color
This API has the capabilities of capture TRUE COLOR images. TRUE COLOR images are
different from the FAST COLOR images because the image data don’t undergo any pre-
processing between the acquisition process and the compression process.
FAST COLOR images are captured at the nominal track speed. This means that the
acquisition process isn’t a real true color acquisition, but the compression process creates a
compressed true color image and the machine can maintain the DPM throughput.
True Color images are captured at a lower track speed. So the acquisition is a real true color
acquisition, but the DPM performance is reduced.
The TRUE COLOUR option could require a reverse gear of the track. As the MICR and the
Printing needs the nominal track speed, if they are enabled, the TRUE COLOUR acquisition
cannot slow down the track until they have terminated their operations. When they (MICR
and printer) have finished their operations, if the document is in front of the image capture
sensor, the device have to move back the document and restart the track to the right speed
(one 3rd of the nominal) to acquire the TRUE COLOUR image.
To capture TRUE COLOR images the application has to enable the new image format
options.
To capture TRUE COLOR images the application has to enable the new image format options
FORMAT_BMP_TRUE_COLOR and FORMAT_JPEG_TRUE_COLOR .
The TRUE COLOR permits you to obtain a finer image quality compared with the FAST
COLOR option, at a lower throughput.
In addiction it is possible to apply a Color Drop-out process based on the TRUE COLOR
acquisition. This option is enabled by the values FORMAT_GIV_DOR_TRUE_COLOR
(Red drop out), FORMAT_GIV_DOG_TRUE_COLOR (Green drop out) and
FORMAT_GIV_DOB_TRUE_COLOR (Blue drop out).

MICR+OCR
This API introduces the capabilities to read the MICR code-line using the magnetic head
signal and the image information. This means that an OCR algorithm is used to create the best
MICR result. This option can strongly reduce the rejects rate of a device.
This option doesn’t change the behaviour of your applications, because they always receive
the MICR_AVAILABLE message with MICR code-line. Internally the API makes a further
process “merging” the MICR result with the OCR one.
This option could slightly reduce the DPM throughput.
To enable it, the application has to set one of MICR_FONT_E13B_OCR,
MICR_FONT_CMC7_OCR and MICR_FONT_AUTO_OCR options in the nMICRFont filed
of the DeviceParameters structure.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

23

Reverse gear
Enabling some DeviceParameters option the machine could need to implement a reverse gear
of the document in the track. This kind of behaviour is present only on machine endowed with
2 pockets or with mechanical reversibility.
There are essentially 4 cases:

1. Printer with Trailing edge alignment.
If the printing data are Trailing edge aligned, the machine needs to know the length of
the document to decide where is the printer start position. When the trailing edge
leaves the first photocell sensor, the machine computes the print position. If this
position is beyond the printer head, the machine has to make a reverse gear of the
document to bring the document to the right position. This operation is very fast with
minimum lack of DPM performance.

2. Smart Printer.
The Smart Printer could require (surely in case of printing from image) a reverse gear
of the document. This happens when the position of the document is beyond the
printing position decided by the application. In this case the machine has to retreat the
document to recover the right position and start the printing operation.

3. True Color.
The reverse gear is necessary when the machine has to wait for the end of MICR
and/or Printer operations. As these two peripherals need the nominal track speed, the
machine has to terminate their operations and, if the leading edge is in front of the
image sensor, stop the track, do a reverse gear of the document, restart the track
setting the right speed to capture the True Color images.

4. Pocket decision.
The reverse gear is requested when the leading edge of the document is beyond the
mechanical switch, inside the default pocket, and the application chooses the second
pocket for that document. If the image capture is enabled, the machine has to wait for
the end of the image operations, then stops the track, makes a reverse gear of the
document and finally put the document in the second pocket.

This kind of reverse gear could happen combined. You can see the 1 combined with 3, or the
2 with 4, the 3 with 4, etc…
The reverse gear affects the DPM performance depending on the option enabled and the
application behaviour.

Virtual endorsement
The Virtual endorsement is the capability of the device to create a graphical printing
overlapped to the rear image of the processed document. Instead of using the physical printing
head the programmer can decide to generate the endorsement data by software. Using the
virtual endorsement the paper won’t be inked at all: in fact this capability excludes the
printing head. The virtual endorsement doesn’t need an IDCard license and it is available
even if the printer is disabled. It has been developed in order to follow the ANSI standard
X9.100-111-2004. It can be used with all the image formats (except for the native bitmap
image).

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

24

Virtual endorsement defines up to eight different areas on the document image. They are the
followings:

- Payee area
- Bank Of First Deposit (BOFD) area

- Transit area (subsequent banks)
- Custom area #1

- Custom area #2
- Custom area #3

- Custom area #4
- Custom area #5

The first three areas are specifically defined following the ANSI X9 standard for US Checks.
The others five are not defined and could be used to create areas that don’t follow the ANSI
standard.
The following figure shows the standard definition of the firsts three areas:

Figure 1 – ANSI layout for back of check
For each area the application can print a multi line text and/or a bitmap. If the text and the
bitmap extension exceed the area boundaries, they are cut within them.
Each area is defined by the following parameters:

- AREA RECTANGLE
It defines the position of the area referred to the aligning edge (bottom edge of the
image), the leading edge (left edge of the image) and the trailing edge (right edge of
the image). It’s defined as a Win32 RECT structure. The values can be defined as mils

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

25

(thousands of inch) or millimeters.
The bottom and the top fields are referred to the aligning edge of the document. They
represent a distance from the aligning edge of the document.
Bottom defines the lower edge of the area and Top is the upper part. Bottom has to be
lower that Top. If Top exceeds the height of the document it’s automatically limited to
the height.
The Left field sets the distance from the Leading edge of the document.
The Right field sets the distance from the Trailing edge of the document.
The following table shows the default values of each endorsement area:

Area ID Bottom Top Right Left Unit

Payee 625 4250 -1500 0 mils

BOFD 625 2750 1500 3000 mils

Transit 625 4250 0 -3000 mils

Custom #1 0 0 0 0 mils

Custom #2 0 0 0 0 mils

Custom #3 0 0 0 0 mils

Custom #4 0 0 0 0 mils

Custom #5 0 0 0 0 mils

The Payee area is defined at a distance of 1500 mils from the trailing edge. It’s
independent from the document length. This is the reason why the left field is not used
(set to 0) and the Right value id negative.
The same is for the Transit area, but it’s defined from the leading edge. The left field
is negative and the right field is not used.
The BOFD area instead has a variable length dependent on the document length. It
defines the distance from the vertical borders.
Every standard area has a bottom edge that skips the MICR clear band (625 mils). The
top edge is defined by the ANSI specifications.

- UNIT
This parameter defines the unit of length set in the rectangle structure. They can be
expressed in mils (thousandth of an inch) or millimeter. The default setting is mils.

- FONT
The font of the text is defined as a Win32 LOGFONT structure. The default font for

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

26

every area is Arial, the size is 10 and the weight is 600 (FW_SEMIBOLD). The font
size has to be defined greater than 0 (negative it isn’t accepted). The size is expressed
in points (1/72 of an inch). The font size is automatically scaled to the image
resolution.

- COLOR
The color of the text is defined as a Win32 COLORREF type. The default settings is
black (RGB(0,0,0)). The color is automatically converted to the right color-space of
the image (True Color, Gray levels and Black&White)

- FLAGS
There is available a set of flags in order to define the horizontal text alignment and the
word wrap. The default setting is center aligned and word wrap turned off. The flags
are defined in the VApiInterface.h file. The flags bits-field is defined as Win32
DWORD type.
The followings figures show the result of printing when word wrap is off or on:

Figure 2 – Word wrap off

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

27

Figure 3 – Word wrap on

- ROTATION
There are four possible counterclockwise rotations. They are 0, 90, 180 and 270
degrees. The default setting is 0 degree except for the Payee area where it is set to 270
degrees.

The application has to call the functions SetVirtualEndorsementAreaProperty or
GetVirtualEndorsementAreaProperty in order to set or get one parameter of an area.
Example – How to set the area, the font, the color, the rotation and the flags of the BOFD area

ChangeParameters(DeviceID);

// Rectangle
RECT Area = {1000,4250,2000,625};
SetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_RECT, (LPVOID)&Area);

// Font
LOGFONT font;
memset(&font, 0, sizeof(font));

GetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_FONT, (LPVOID)& font
);
font.lfHeight = 14;
font.lfWeight = FW_BOLD;
strcpy(font.lfFaceName , "Courier New");
SetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_FONT, (LPVOID)&font);

// Color
COLORREF Color = RGB(128,0,0); // Dark red
SetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

28

 ENDORSEMENT_PARA M_COLOR, (LPVOID)&Color
);

// Rotation
DWORD Rot = ENDORSEMENT_ROTATE_270;
SetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_ROTATION, (LPVOID)&Rot
);

// Flags – Left horizontal alignment and word-wrap on
DWORD Flags = (ENDORSEMENT_FLAG_LEFT | ENDORSEMENT_FLAG_WORD_WRAP);
SetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_FLAGS, (LPVOID)&Flags
);

In order to enable the virtual endorsement the application has to set a flag in the bPrintEnable
field.
If the Virtual Endorsement flag is enabled the parameters regarding the printing quality and
the alignment are ignored.
The Smart Jet is available when Virtual endorsement is requested.
Example: How to enable the Virtual Endorsement

DeviceParameters params;
BOOL SmartJetEnabled = TRUE;

params.bPrinteEnable = (PRINTER_ENABLE_LEADING_EDGE |
PRINTER_VIRTUAL_ENABLE);

if(SmartJetEnabled)
 params.bPrinteEnable |= PRINTER_ENABLE_SMART_JET;

Once the Virtual endorsement is enabled the application has to the function
SetVirtualEndorsement in order to set the text and a bitmap of a specific area. The call
sequence of this function is exactly the same requested for the SendPrinterData function.
Since the physical printer is not available when the Virtual is enabled the application has to
SetVirtualEndorsement instead of SendPrinterData.
A further capability is that the application is able to call the SetVirtualEndorsement multiple
times in order to print into different areas for each documents processed.
Example: How to print a text into BOFD and a BMP into Payee on the same document

case WMPAR_SORTER_SET_ITEM_OUTPUT:
 …
 SetVirtualEndorsement(DeviceID, ENDORSEMENT_AREA _BOFD, ”BOFD text”,
 NULL, 0);
 SetVirtualEndorsement(DeviceID, ENDORSEMENT_AREA _PAYEE, NULL,
 “Payee.bmp”, ENDORSEMENT_B MP_FILE);

Error Handling

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

29

The error query is available with specific functions, for each of them there are two versions,
one retrieving the Error Code, the other returning the string that describes the error.

The types of the errors that can occur are:

• USB Errors that depends on communication problems between the device and the PC
through the USB connection. Details on the error can be retrieve with the function
GetUsbError and GetUsbErrorString.

• Device Errors typically depend on mechanical or peripheral problems. Their related
functions are GetDeviceError and GetDeviceErrorString. A Device Error, could be
due to a USB Error, so the nature of the cause will require further investigation.

• API Errors are errors concerning software problems, use GetApiError and
GetApiErrorString to get details on the error which occurred. An API Error can be a
USB Error or a Device Error.

When a function call returns FALSE, it is an API Error (that could be a USB or a Device
error), so the function GetApiError or GetApiErrorString must be used for first analysis.
When the message WMPAR_SORTER_EXCEPTION is received, it is a Device Error and
so GetDeviceError or GetDeviceErrorString must be used. In addition the LPARAM of the
message contains in the lower 2 bytes the error code of the error that occurred, in the higher 2
bytes the number of the current document (if it is significant, otherwise it is set to zero).

For further analysis, more functions are available like GetSorterError and
GetSorterErrorString. They obtain the error code directly from the firmware (this can be
useful, for example, to know the exact point where a jam occurred). See the function
definitions in the next chapter for more details.

USB Errors

USB_ERR_NONE 0 : No error
USB_ERR_INVALID_DEVICE_NAME 1 : Invalid USB device name.
USB_ERR_OPEN_DRIVER 2 : Error opening driver
USB_ERR_CLOSE_DRIVER 3 : Error closing driver
USB_ERR_GET_PIPE_INFO 4 : Get pipe info failure
USB_ERR_GET_DEVICE_DESCRIPTOR 5 : Get device descriptor failure
USB_ERR_DEVICE_IO_CONTROL 6 : Device I/O Control call failure
USB_ERR_WRITE_BULK 7 : Write bulk pipe failure
USB_ERR_READ_BULK 8 : Read bulk pipe failure
USB_ERR_WRITE_CONTROL 9 : Write control failure
USB_ERR_READ_CONTROL 10 : Read control failure
USB_ERR_GET_LINK_STATE 11 : Get link state failure
USB_ERR_SEND_LINK_MESSAGE 12 : Send link message failure
USB_ERR_RECEIVE_LINK_MESSAGE 13 : Error receiving link message
USB_ERR_PROGRAM_FPGA 14 : Program FPGA error

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

30

USB_ERR_CHECK_FPGA 15 : Check FPGA programming
 done

USB_ERR_WRITE_E2PROM 16 : Error writing E2PROM
USB_ERR_READ_E2PROM 17 : Error reading E2PROM
USB_ERR_SET_TIME_LEDS 18 : Error setting LEDs time
USB_ERR_SET_GAINS 19 : Error setting LEDs gains
USB_ERR_SET_OFFSETS 20 : Error setting LEDs offsets
USB_ERR_WRITE_DMA_BULK 21 : Error writing DMA bulk pipe

 failure
USB_ERR_READ_DMA_BULK_PARAM 22 : Error reading DMA bulk pipe
 – parameter
USB_ERR_READ_DMA_BULK_SETUP 23 : Error reading DMA bulk pipe

 – setup
USB_ERR_READ_DMA_BULK_PHASE1 24 : Error reading DMA bulk pipe
 – phase 1
USB_ERR_READ_DMA_BULK_PHASE2 25 : Error reading DMA bulk pipe

 – phase 2
USB_ERR_READ_DMA_BULK_CLEAR 26 : Error reading DMA bulk pipe

 – clear
USB_ERR_READ_ID_CARD 27 : Error reading ID CARD

 EEPROM
USB_ERR_WRITE_ID_CARD 28 : Error writing ID CARD
 EEPROM
USB_ERR_SET_DPM 29 : Error setting DPM

Device Errors

DEVICE_ERR_NONE 0 : No error
DEVICE_ERR_UNKNOWN_SORTER_ERROR 1 : Unknown sorter
 error
DEVICE_ERR_USB 2 : USB error
DEVICE_ERR_WAIT_FEED_DONE_TIMEOUT 4 : Wait feed done
 Timeout

DEVICE_ERR_WAIT_LAST_DOC_POCKETED_TIMEOUT 5 : Wait last

 document
pocketed
timeout

DEVICE_ERR_READ_SORTER_STATUS 6 : Read sorter
 status failure

DEVICE_ERR_SORTER_ERROR_PENDING 7 : Sorter error
 pending:

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

31

photocell calibration
failure or jammed
document

DEVICE_ERR_COMMUNICATION_FAILURE 8 : Communication
failure reported by the
sorter

DEVICE_ERR_FEED_FAILURE 9 : Feed failure
DEVICE_ERR_FULL_POCKET 10 : Full pocket detected
DEVICE_ERR_SAFETY 11 : Open cover
DEVICE_ERR_GET_LAST_DOC_POCKETED_ID 12 : Failure

reading last document
pocketed ID

DEVICE_ERR_FEED_DOCUMENT 13 : Failure sending
Feed document
command

DEVICE_ERR_TRACK_NOT_CLEAR 14 : Feeding
command failure due
to a document in the
track

DEVICE_ERR_SET_POCKET 15 : Set pocket
 command failure

DEVICE_ERR_GET_LAST_DOC_ID 16 : Failure reading
 last document ID

DEVICE_ERR_READ_MICR_SIZE 17 : Failure reading
MICR waveform size

DEVICE_ERR_READ_MICR_WAVEFORM_CHUNK 18 : Failure reading
MICR waveform
chunk

DEVICE_ERR_DIFFERENT_MICR_SIZE 19 : Different
returned MICR size

DEVICE_ERR_MICR_BUFFER_OVERFLOW 20 : MICR buffer
 Overflow error

DEVICE_ERR_MICR_READING 21 : MICR reading
 failure

DEVICE_ERR_ACQUISITION_FAILED 22 : Not able to
 acquire Image

DEVICE_ERR_COMPRESSION_ERR 23 : Error in
Compression Thread

DEVICE_ERR_READ_ERROR 24 : Read sorter
 error failure

DEVICE_ERR_CREATE_COMPENSATION_TABLES 25 : Failure
creating compensation
tables

DEVICE_ERR_ID_CARD 26 : Failure

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

32

Decoding the ID Card
DEVICE_ERR_DEVICE_ENABLING 27 : Failure

Enabling, device not
available

DEVICE_ERR_LOADING_OCR 28 : Failure
 loading OCR engine

DEVICE_ERR_CONNECTION_TIMEOUT 29 : Connection
 timeout

DEVICE_ERR_FEEDER_EMPTY 30 : Feeder empty
DEVICE_ERR_FREE_TRACK_FAILED 31 : Not able to free

 the track
DEVICE_ERR_SOFTWARE_OVERLOAD 32 : Internal error
DEVICE_ERR_STANDBY 33 : Internal error
DEVICE_ERR_NOT_COMPATIBLE_FW 34 : Internal error
DEVICE_ERR_INVALID_SEND_PRINTER 35 : Invalid data sent to

 Printer
DEVICE_ERR_UNSUPPORTED_ID_CARD 36 : The IDCard contains

unsupported
information

DEVICE_ERR_INVALID_PARAMETERS 37 : Application is setting
wrong device
parameters

DEVICE_ERR_FEEDER_LIMIT 38 : The feeder has reached
 the docs limitation

DEVICE_ERR_WAITING_FEEDER_EMPTY 39 : The device is waiting
 for feeder empty for

docs limitation has been
reached

DEVICE_ERR_FEEDER_LIMIT_RESET 40 : The feeder is ready to
 work after reset

DEVICE_ERR_NOT_AVAILABLE_MAX_DPM 41 : Not available DPM
 Number

DEVICE_ERR_NOT_CALIBRATED_IMAGE 42 : Not Calibrated Images
DEVICE_ERR_UPGRADE_UNSUCCESSFUL 43 : Error Upgrading

 IDCard
DEVICE_ERR_NO_PREREQUISITE_FOR_UPGRADE 44 : No Upgrade

 prerequisite found

API Errors

API_ERR_NONE 0 : No error
API_ERR_DEVICE_CREATE 1 : Device creation failure
API_ERR_BRIDGE_THREAD 2 : Failure creating or resuming Bridge

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

33

Thread during API start-up or shut-
down

API_ERR_POLLING_THREAD 3 : Failure creating or resuming Polling
Thread during API start-up or shut-
down

API_ERR_COMPRESSION_THREAD 4 : Failure Creating or Resuming
Compression Thread during API start-
up or shut-down

API_ERR_OCR_MANAGER 5 : Generic OCR error
API_ERR_OCR_NOT_ENABLED 6 : The OCR font is not available
API_ERR_BUFF_ALLOC 7 : Buffer allocation failure
API_ERR_NO_USB_PORT_AVAILABLE 8 : No USB port available during the

 start-up of the API
API_ERR_LOG 9 : Error writing function call to Log

 file
API_ERR_INVALID_DEV_ID 10 : API method called with an invalid

 ID
API_ERR_INVALID_DEV_OBJ 11 : Internal error
API_ERR_INVALID_PARAM 12 : Invalid parameter passed to API
API_ERR_INVALID_STATE 13 : Method cannot be called inside

 the current API state
API_ERR_DEVICE 14 : Device Error
API_ERR_USB 15 : USB Error
API_ERR_FPGA_PROGRAMMING 16 : FPGA programming error
API_ERR_E2PROM_WRITE 17 : E2PROM write error
API_ERR_E2PROM_READ 18 : E2PROM read error
API_ERR_SET_TIME_LEDS 19 : Set time LED error
API_ERR_SET_GAINS 20 : Set gains error
API_ERR_SET_OFFSETS 21 : Set offsets error
API_ERR_SERIAL_PORT 22 : Error opening or closing serial port
API_ERR_SEND_SERIAL_COMMAND 23 : Error sending command through

 serial port
API_ERR_NOT_AVAILABLE_DEVICE 24 : Device not available

Sorter Errors

The error word (4 byte value) is composed in the following way:

Byte 3 (MSB) - Error Class
Byte 2 - Peripheral involved in the error
Byte 1 - Error Code
Byte 0 (LSB) - Jam Point

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

34

Error Class
ERR_GENERAL 0x00 : General error
ERR_COMM 0x01 : Error in Communication with PC
ERR_INIT 0x02 : HW initialization Error
ERR_PERIPHERAL 0x03 : Device error.
ERR_TRANSPORT 0x04 : Error during paper transport

Peripheral Codes
GENERAL 0x00 : No Specific Peripheral
COMMUNICATION 0x01 : Error in Communication
READER_MODULE 0x02 : Error in MICR Reading module
IMAGE 0x06 : Error in Scanner module
PRINTER1 0x07 : Error in Printer module

Error Codes
ERR_NONE 0x00 : No errors

Error codes related to ERR_COMM
ERR_UNKNOWN_CMD 0x02 : Unknown Command
ERR_INVALID_CMD 0x03 : Invalid Command
ERR_DOC_ID 0x04 : The Doc ID sent already exists
ERR_POCKET 0x05 : Invalid destination pocket

 request
ERR_PARAM 0x08 : Error reading/writing a parameter

Error codes related to ERR_INIT
ERR_INIT_PHOTOS 0x01 : Photocell initialization error

Error codes related to ERR_PERIPHERAL
ERR_OPENED_COVER 0x01 : Open cover

Error codes related to ERR_TRANSPORT
ERR_DOC_LOST 0x01 : Docs never reached a photocell or lost in

 front of one of the photocells
ERR_DOC_LENGTH 0x02 : Document too long
ERR_DOC_FEED 0x03 : Missing document in the feeder or feed failure
ERR_FREE_TRACK 0x04 : Free track not completed
ERR_DOC_DEST 0x05 : Document without destination pocket
ERR_DOUBLE_FEEDING 0x08 : Double-feed detected
ERR_BUSY_PHOTO 0x0A: Photo busy during process start
ERR_PRINTER 0x0B: The printer device has detected a problem
ERR_IMAGE 0x0C: The image device has detected a problem

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

35

Function Calls

VisionAPI layers Functions

Here are the interface layer functions. They are used to manage the VisionAPI interface layer.
They are declared in the “VApiInterface.h” file.
These functions are defined with a new prototypes style. The MyVisionX API defined the
functions in this manner:

BOOL FunctionName(Parameters)
Every function returns a BOOL value in order to signal operations end successfully or not.
Then the application has to call the “GetError” functions to detect the reason of the problem.
The VisionAPI interface functions, instead, are defined in this manner:

ERR_CODE FunctionName(Parameters)
The difference is that these new set of functions directly return the eventual error code.

VApiGetVersion

VAPI_RET_TYPE VApiGetVersion(char* sVersion, DWORD MaxLen)

This function is used to obtain the VisionAPI interface release, which is returned as a NULL
terminated string.

Arguments: char* sVersion – the pointer to a user allocated char buffer where the API

version will be copied.

 BYTE MaxLen – the length of the user allocated buffer.

Return Value: VAPI_ERR_NONE if successful.

Example:

 char sVersion[250];

VAPI_RET_TYPE RetCode;
 ……………………
 // Get the VisionApi laver version
 RetCode = VApiGetRelease(sVersion, sizeof(sVersio n));
 if(RetCode != VAPI_ERR_NONE)
 {
 // Function failed, RetCode contains the error c ode

}

VApiSetDeviceEngine

VAPI_RET_TYPE VApiSetDeviceEngine(DWORD EngineSelector)

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

36

This function is used to load an underlying device engine. This function is intended for future
use, in order a different device engine to drive a specific Panini device. Now the unique
supported function device is the MyVisionX / Vision|X. If this function is not called the
VisionAPI automatically load the Vision|X device layer.
It must be called as the first function or after a “Shutdown” call, in other words when no
devices are connected.

Arguments: DWORD EngineSelector – set the engine to be loaded. The valid values for

this parameter are defined in the header file.

Return Value: VAPI_ERR_NONE if successful.

Example:

 DWORD EngineSelector = VAPI_ENGINE_VX;
 ……………………
 // Load the desired device engine layer
 RetCode = VApiSetDeviceEngine(EngineSelector);
 if(RetCode != VAPI_ERR_NONE)
 {
 // Function failed, RetCode contains the error c ode

}
 …………………………………

VApiGetError

VAPI_RET_TYPE VApiGetError(void)

This function gets the last occurred error. It has to be called after a function call failure to
know the reason of the problem. Use this function with the other device engine layer to
understand the reason of a function call failure.

Arguments: -

Return Value: The error code.

Example:

 VAPI_RET_TYPE VApiError = 0;
 ……………………
 // Get the last occurred error
 VApiError = VApiGetError();
 if(VApiError != VAPI_ERR_NONE)
 {
 // Manage the error code

}
else
{

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

37

//Call the device engine layer “GetError” //functio n
}

 …………………………………

VApiGetErrorString

VAPI_RET_TYPE VApiGetErrorString(ERR_CODE ErrorCode, char* sErrorString, int
MaxLen)

This function gets an error code description. After a call to the VApiGetError the programmer
can use this function to obtain a description of the error.

Arguments: ERR_CODE ErrorCode - The error code returned by the VApiGetError

function
 char *sErrorString – a user allocated string that receive the description
 int MaxLen – the size of the user allocated string

Return Value: VAPI_ERR_NONE if successful.

Example:

 VAPI_RET_TYPE VApiError = 0;

Char sErrorString[250];
 // Get the last occurred error
 VApiError = VApiGetError();
 if(VApiError != VAPI_ERR_NONE)
 {

VApiGetErrorString(VApiError, sErrorString,
sizeof(sErrorString));

 // Manage the error code
}
else
{

//Call the device engine layer “GetError” //functio n
}

VisionAPI errors
VisionAPI define its set of error codes related to its software layer. They are defined in
“VApiInterface.h”. Here is the list of the errors:

• VAPI_ERR_NONE
• VAPI_ERR_ENGINE_LOAD_FAILED
• VAPI_ERR_FUNCTION_NOT_SUPPORTED
• VAPI_ERR_INVALID_PARAM
• VAPI_ERR_INTERNAL

These error’s codes are returned directly from the VisionAPI functions (VApiGetVersion,
VApiSetDeviceEngine, VApiGetError and VApiGetErroString) or calling VApiGetError after
a device function call failure.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

38

The previous functions GetApiError, GetDeviceError, GetUsbError and GetSorterError have
still to be used.

Device layer functions
Here are the device layer functions. They are used to drive the physical device.

Information Functions

GetApiRelease

BOOL GetApiRelease(char* sVersion, BYTE MaxLen)

This function is used to obtain the API release, which is returned as a NULL terminated
string.

Valid in State: All
State Transition: None

Arguments: char* sVersion – the pointer to a non-NULL char buffer where the API version

will be stored.

 BYTE MaxLen – the length of the user allocated buffer.

Return Value: TRUE if successful.

Example:

 char sVersion[250];

BOOL bOk;
 ……………………
 // Read the Api Release
 bOk = GetApiRelease(sVersion, 250);
 …………………………………

GetDriverRelease

BOOL GetDriverRelease(char* sVersion, BYTE MaxLen)

This function is used to obtain the driver release, which is returned as a NULL terminated
string.

Valid in State: All
State Transition: None

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

39

Arguments: char* sVersion – the pointer to a non-NULL char buffer where Driver version
will be stored.

 BYTE MaxLen – the length of the user allocated buffer.

Return Value: TRUE if successful.

Example

 char sVersion[250];

BOOL bOk;

 ……………………
 // Read the Driver Release
 bOk = GetDriverRelease(sVersion, 250);
 …………………………………

GetFWVersion

BOOL GetFwVersion(DWORD DeviceID, char* sVersion, BYTE MaxLen)

This function is used to obtain the Firmware version, which is returned as a NULL terminated
string. It can be called only after the device is connected, because it is retrieved directly from
the device.

Valid in State: DeviceChangeParameters, DeviceOnLine, DeviceOffLine
State Transition: None

Arguments: DWORD DeviceID – the Identification number of the device.

char* sVersion – the pointer to a non-NULL char buffer where the Firmware
version will be stored.

 BYTE MaxLen – the length of the user allocated buffer.

Return Value: TRUE if successful.

Example

 char sVersion[250];

BOOL bOk;
 ……………………
 // Read the Firmware version
 bOk = GetFwVersion(m_DeviceID, sVersion, 250);
 …………………………………

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

40

GetSerialNumber

BOOL GetSerialNumber(DWORD DeviceID, char* pSerialNumber,

 BYTE MaxLen)
This function is used to obtain the Serial number of the connected reader, which is returned as
a NULL terminated string. It can be called only after the device is connected, because it is
retrieved directly from the device.

Valid in State: DeviceChangeParameters, DeviceOnLine, DeviceOffLine
State Transition: None

Arguments: DWORD DeviceID – the Identification number of the device.

char* pSerialNumber – the pointer to a non-NULL char buffer where the
serial number will be stored.

 BYTE MaxLen – the length of the user allocated buffer.

Return Value: TRUE if successful.

Example

 char sSerial[15];

BOOL bOk;
 …………………
 // Read the Serial Number
 bOk = GetSerialNumber(m_DeviceID, sSerial, 15);
 …………………………………

ReadCryptedIDCard

BOOL ReadCryptedIDCard(DWORD DeviceID, BYTE *pIDCard, BYTE *pLen)

This function is used to obtain the IDCard encrypt code.

Valid in State: DeviceChangeParameters
State Transition: None

Arguments: DWORD DeviceID – the Identification number of the device.

BYTE *pIDCard – the pointer to a Byte buffer where the encrypt IDCard will be stored.

 BYTE *pLen – Input: contain the pIDCard length (at least 128 bytes); Output:

contain the bytes copied in pIDCard.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

41

Return Value: TRUE if successful.

Example

 BYTE IDCardBuffer[200];

BOOL bOk;
BYTE RealLen;

 ……………………
 // Read the crypted IDCard
 bOk = ReadCryptedIDCard(m_DeviceID, IDCardBuffer, &RealLen);
 …………………………………

IDCard and capabilities request functions

GetIDCardDescription

BOOL GetIDCardDescription(DWORD DeviceID, char **pDescription, int *pLen,
DEVICES *Devices)
This function is used to obtain the description of the device from the IDCard, which stores all
information about rights and licenses. The buffer for the description is a pointer address
supplied by the application and will be internally allocated, so remember to free it with
VirtualFree() when it is no longer needed. The DEVICES structure will contain the features
of the device. The DEVICES structure members are the following:

char SerialNumber[11] : Serial number 53xxxxx

BYTE FeederLimit : Valid values are 0(Unlimited), or 30
BYTE MaxDPM : Document per minute
BOOL MicrE13B : TRUE means device available
BOOL MicrCMC7 : TRUE means device available
BOOL MicrAUTO : TRUE means device available

BOOL Inkjet : TRUE means device available
BOOL InkjetMultiline : TRUE means device available
BOOL InkjetGraphic : TRUE means device available
BYTE InkjetLines : Valid values are 0 (Unlimited), 1, 2 and 3 lines.

BOOL ImageFront : TRUE means device available
BOOL ImageFrontClr : TRUE means device available
BOOL ImageFrontDropOut : TRUE means device available
BOOL ImageRear : TRUE means device available
BOOL ImageRearClr : TRUE means device available
BOOL ImageRearDropOut : TRUE means device available

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

42

BOOL OcrAB : TRUE means device available
BOOL OcrMicr : TRUE means device available
BOOL OcrBarcode1D : TRUE means device available
BOOL OcrBarcode2D : TRUE means device available

Valid in State: DeviceChangeParameters
State Transition: None

Arguments: DWORD DeviceID – the Identification number of the device.

char **pDescription – the address of the pointer where to allocate and store
the device description received from the IDCard.

 BYTE *pLen – Receive the IDCard description’s length.

Return Value: TRUE if successful.

Example

 char *sDescription;

int RealLen;
 ……………………

if(GetIDCardDescription(m_DeviceID, &sDescription , &Len))
 {
 …………………………………
 VirtualFree(sDescription, 0, MEM_RELEASE);
 }

…………………………………

UpgradeIDCard

BOOL UpgradeIDCard(DWORD DeviceID, BYTE *pIDCardUpgrade, DWORD Len)

Use this function to upgrade a device using an IDCard Upgrade buffer. If the missing of a
prerequisite is detected a DEVICE_ERR_NO_PREREQUISITE_FOR_UPGRADE error is
retrieved.

Valid in State : DeviceChangeParameters
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

BYTE *pIDCardUpgrade – it’s the buffer that contain the IDCard upgrade
data.
DWORD Len – it’s the length of the upgrade buffer (256 bytes).

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

43

Return Value : TRUE if successful.

Example

 FILE *pIDCardUpgradeFile ;
 BYTE pIDCardBuffer1[256] ;
 ……………………

pIDCardUpgradeFile = fopen(“MVXUpgrade.UpID”,”rb”);
if(pIDCardUpgradeFile)

{
fread(pIDCardBuffer1,256,pUpgradeFile);
fclose(pIDCardUpgradeFile);
}

if(UpgradeIDCard(m_DeviceID, pIDCardBuffer1, 256))

 {
 …………………………………
 }

…………………………………

GetDeviceFeature

BOOL GetDeviceFeature(DWORD DeviceID, DWORD FeatureID, LPVOID
lpReturnedBuffer, DWORD BufferSize)
This function is used to obtain information, capabilities and licenses of the device. Most of
the information returned by this function is equal to the ones returned by the
GetIDCardDescription function.
The information are requested passing a feature ID number (FeatureID) to the function
that returns the corresponding data in the user allocated buffer (lpReturnedBuffer). The
buffer must be big enough to contain the data (BufferSize).
The data are defined as DWORD (32 bits) or char string. The features ID are defined in the
header file.
The following table lists the features that can be requested:

FeatureID Type Size Values Description
DEVICE_FEATURE_DEVICE_TYPE DWORD 4 DEVICE_MYVISIONX

DEVICE_VISIONX
This value
identifies
the device
version

DEVICE_FEATURE_SN char* 11 Null terminated string I t’s the
device
serial
number

DEVICE_FEATURE_SN_IDCARD char* 11 Null terminated s tring It’s the
IDCard
serial
number

DEVICE_FEATURE_EXTERNAL_IDCARD DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

This value
identifies
if an
external

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

44

IDCard is
connected

DEVICE_FEATURE_SN_EXTERNAL_IDCARD char* Null termi nated string It’s the
external
IDCard
serial
number

DEVICE_FEATURE_DPM DWORD 4 It’s the
maximum DPM

DEVICE_FEATURE_FEEDER_LIMIT DWORD 4 0 means unlimit ed.
Others are the maximum
feeder capacity

It’s feeder
capacity

DEVICE_FEATURE_FEEDER_SD DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

This value
identifies
an SD device

DEVICE_FEATURE_MICR_E13B DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

MICR E13B
dis/enable

DEVICE_FEATURE_MICR_CMC7 DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

MICR CMC7
dis/enable

DEVICE_FEATURE_MICR_AUTO DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

MICR AUTO
dis/enable

DEVICE_FEATURE_MICR_OCR_E13B DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

MICR+OCR
E13B
dis/enable

DEVICE_FEATURE_MICR_OCR_CMC7 DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

MICR+OCR
CMC7
dis/enable

DEVICE_FEATURE_PRINTER_TYPE DWORD 4 DEVICE_PRINTER_DISABLED
DEVICE_PRINTER_SINGLE_LINE
DEVICE_PRINTER_AGP

This value
identifies
the printer
version

DEVICE_FEATURE_PRINTER_LINES DWORD 4 0 means unlimi ted.
Others are the maximum
printer’s lines

It’s the
printer’s
available
lines

DEVICE_FEATURE_PRINTER_BITMAP DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Printer
bitmap
dis/enable

DEVICE_FEATURE_PRINTER_BITMAP_HEIGHT DWORD 4 Single line: 12 pixels
AGP: 25, 50, 75 or 100

It’s the
height of
the in
pixels

DEVICE_FEATURE_IMAGE_FRONT DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Front image
dis/enable

DEVICE_FEATURE_IMAGE_FRONT_FAST_COLOR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Front image
Fast color
dis/enable

DEVICE_FEATURE_IMAGE_FRONT_TRUE_COLOR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Front image
True Color
dis/enable

DEVICE_FEATURE_IMAGE_FRONT_FAST_DROPOUT DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Front image
Fast Dropout
dis/enable

DEVICE_FEATURE_IMAGE_FRONT_DPI DWORD 4 200, 300 It’ s the
front image
max
resolution
(DPI)

DEVICE_FEATURE_IMAGE_FRONT_FAST_DROPOUT_IR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Front image
Fast
Infrared
Dropout
dis/enable

DEVICE_FEATURE_IMAGE_REAR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Rear image
dis/enable

DEVICE_FEATURE_IMAGE_REAR_FAST_COLOR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Rear image
Fast color
dis/enable

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

45

DEVICE_FEATURE_IMAGE_REAR_TRUE_COLOR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Rear image
True Color
dis/enable

DEVICE_FEATURE_IMAGE_REAR_FAST_DROPOUT DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Rear image
Fast Dropout
dis/enable

DEVICE_FEATURE_IMAGE_REAR_DPI DWORD 4 200, 300 It’s the
Rear image
max
resolution
(DPI)

DEVICE_FEATURE_IMAGE_REAR_FAST_DROPOUT_IR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Rear image
Fast
Infrared
Dropout
dis/enable

DEVICE_FEATURE_OCR_AB DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

OCR A/B
fonts
dis/enable

DEVICE_FEATURE_OCR_MICR DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

OCR MICR
fonts
dis/enable

DEVICE_FEATURE_OCR_BARCODE_1D DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Barcode 1D
fonts
dis/enable

DEVICE_FEATURE_OCR_BARCODE_2D DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Barcode 2D
fonts
dis/enable

DEVICE_FEATURE_IQA DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

IQA
dis/enable

DEVICE_FEATURE_POCKETS DWORD 4 1, 2 It’s the
maximum
number of
pockets
available

DEVICE_FEATURE_ROHS_COMPLIANT DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

ROHS HW
compliance

DEVICE_FEATURE_SMART_JET DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Smart-Jet
dis/enable

DEVICE_FEATURE_MAGCARD DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Magcard
dis/enable

DEVICE_FEATURE_OCR_ENGINE DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

OCR engine
installed

DEVICE_FEATURE_BARCODE_1D_ENGINE DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Barcode 1D
engine
installed

DEVICE_FEATURE_BARCODE_2D_ENGINE DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

Barcode 2D
engine
installed

DEVICE_FEATURE_MICR_OCR_ENGINE DWORD 4 DEVICE_FEATURE_NO
DEVICE_FEATURE_YES

MICR+OCR
engine
installed

Valid in State: DeviceChangeParameters, DeviceOnLine
State Transition: None

Arguments: DWORD DeviceID – the Identification number of the device.

DWORD FeatureID – It’s the requested Feature ID number.

LPVOID lpReturnedBuffer – It’s the user allocated buffer that receive the
feature data.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

46

 DWORD BufferSize – It’s the buffer size. It must be big enough to contain the
data.

Return Value: TRUE if successful.

Example

 char SerialNumber[20];

DWORD FeatureValue;
 ……………………

if(GetDeviceFeature(m_DeviceID, DEVICE_FEATURE_DEVICE_TYPE,
&FeatureValue, 4))

 {
 if(FeatureValue == DEVICE_VISIONX)
 MessageBox(“VisionX device”, “Device type”, MB_ OK);
 }

if(GetDeviceFeature(m_DeviceID, DEVICE_FEATURE_SN, SerialNumber,
sizeof(SerialNumber)))

 {
 MessageBox(SerialNumber, “Device serial number” , MB_OK);
 }

…………………………………

Error Request Functions

GetUsbError

BOOL GetUsbError(DWORD DeviceID, DWORD * pdwError)

Use this function to retrieve information if a USB error occurs. pdwError will be the USB
error code (see Error Handling Chapter for more information).

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD * pdwError – the pointer to a DWORD in which the Error Code will
be stored.

Return Value : TRUE if successful.

Example

 DWORD ErrorCode;
 ……………………

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

47

if(GetUsbError (m_DeviceID, &ErrorCode))
 {
 …………………………………
 // Report error

MessageBox(…);
 }

…………………………………

GetUsbErrorString

BOOL GetUsbErrorString(DWORD DeviceID, char * pcErrorString, int MaxLen)

Use this function to retrieve information if a USB error occurs. The pointer pcErrorString will
be the USB error description string.

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

char * pcErrorString – the pointer to a string in which the Error description
will be stored.

int MaxLen – the max length of the string

Return Value : TRUE if successful.

Example

 char ErrorString[200];
 ……………………

if(GetUsbErrorString(m_DeviceID, ErrorString, 200))
 {
 …………………………………
 // Report error

MessageBox(…);
 }

…………………………………

GetDeviceError

BOOL GetDeviceError(DWORD DeviceID, DWORD * pdwError)

Use this function to retrieve information if a Device error occurs. pdwError will be the Device
error code (see Error Handling Chapter for more information).

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

48

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD * pdwError – the pointer to a DWORD in which the Error Code will
be stored.

Return Value : TRUE if successful.

Example

 DWORD DeviceErrorCode;

DWORD UsbErrorCode;
…………………………………

 // A DEVICE ERROR has occurred, it could be due t o an USB error
 GetDeviceError(m_DeviceID, & DeviceErrorCode) ;
 if(DeviceErrorCode == DEVICE_ERR_USB)
 {
 // USB ERROR
 GetUsbError (m_DeviceID, & UsbErrorCode);
 …………………………………
 }

GetDeviceErrorString

BOOL GetDeviceErrorString(DWORD DeviceID, char * pcErrorString,

 int MaxLen)

Use this function to retrieve information if a Device error occurs. pcErrorString will be the
Device error description string.

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

char * pcErrorString – the pointer to a string in which the Error description
will be stored.

int MaxLen – the max length of the string

Return Value : TRUE if successful.

Example

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

49

 char ErrorString[200];
 ……………………

if(GetDeviceErrorString(m_DeviceID, ErrorString, 200))
 {
 …………………………………
 // Report error

MessageBox(…);
 }

…………………………………

GetApiError

BOOL GetApiError(DWORD * pdwError)
Use this function to retrieve information if an API error occurs. pdwError will be the API
error code (see Error Handling Chapter for more information).

Valid in State : All
State Transition : None

Arguments : DWORD * pdwError – the pointer to a DWORD in which the Error Code will

be stored.

Return Value : TRUE if successful.

Example

 DWORD ApiErrorCode;

DWORD UsbErrorCode;
DWORD DeviceErrorCode;
…………………………………
// An API ERROR has occurred, it could be due to a USB error or
to a // device error

 GetApiError(&ApiErrorCode);
 if(ApiErrorCode == API_ERR_USB)
 {
 // USB ERROR
 GetUsbError (m_DeviceID, & UsbErrorCode);
 …………………………………
 }

else if(ApiErrorCode == API_ERR_DEVICE)
{
// DEVICE ERROR

 GetDeviceError (m_DeviceID, & DeviceErrorCode) ;
 …………………………………

}

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

50

GetApiErrorString

BOOL GetApiErrorString(char * pcErrorString, int MaxLen)

Use this function to retrieve information if an API error occurs. pcErrorString will be the API
error description string.

Valid in State : All
State Transition : None

Arguments : char * pcErrorString – the pointer to a string in which the Error description

will be stored.

int MaxLen – it’s the max length of the string.

Return Value : TRUE if successful.

Example

 char ErrorString[200];
 ……………………

if(GetApiErrorString(ErrorString, 200))
 {
 …………………………………
 // Report error

MessageBox(…);
 }

…………………………………

GetSorterError

BOOL GetSorterError(DWORD DeviceID, DWORD * pdwError)

Use this function to retrieve information directly from the firmware, it is to be used only when
more information about a problem is needed. pdwError will be the Sorter error code (see
Error Handling Chapter for more information).

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD * pdwError – the pointer to a DWORD in which the Error Code will
be stored.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

51

Return Value : TRUE if successful.

Example

 DWORD SorterErrorCode;

BYTE ErrorClass;
BYTE Peripheral;
BYTE ErrorCode;
BYTE JamPoint;
…………………………………
if(GetSorterError(m_DeviceID, &SorterErrorCode))
 {
 ErrorClass = (SorterErrorCode & 0xFF000000) >> 24 ;

Peripheral = (SorterErrorCode & 0x00FF0000) >> 16;
ErrorCode = (SorterErrorCode & 0x0000FF00) >> 8;
JamPoint = (SorterErrorCode & 0x000000FF);
}

GetApiErrorString

BOOL GetSorterErrorString(DWORD DeviceID, char * pcErrorString, int MaxLen)

Use this function to retrieve information directly from the firmware, it is to be used only when
more information about a problem is needed. pcErrorString will be the Sorter error
description string.

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

char * pcErrorString – the pointer to a string in which the Error description
will be stored.

 BYTE MaxLen – the length of user allocated buffer.

Return Value : TRUE if successful.

Example

 char ErrorString[200];
 ……………………

if(GetSorterErrorString(m_DeviceID, ErrorString, 200))
 {
 …………………………………
 // Report error

MessageBox(…);
 }

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

52

Device States Control Functions

GetDeviceState

BOOL GetDeviceState(DWORD DeviceID, DWORD * pdwDeviceState)

Use this function to retrieve the current status code of the device.

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD * pdwDeviceState– the pointer to a DWORD in which the current
state will be stored.

Return Value : TRUE if successful.

Example

 DWORD DeviceState;

…………………………………
if(GetDeviceState(m_DeviceID, &DeviceState))
 {

…………………………………
}

GetDeviceStateString

BOOL GetDeviceStateString(DWORD DeviceID, char * pcDeviceStateString, int MaxLen)

Use this function to retrieve the Device State string. pcDeviceStateString will be the Device
State string.

Valid in State : All
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

char * pcDeviceStateString – the pointer to a string in which the Device State
will be stored.

 BYTE MaxLen – the length of the user allocated buffer.

Return Value : TRUE if successful.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

53

Example

 char DeviceStateString[200];
 ……………………

if(GetDeviceStateString(m_DeviceID, DeviceStateSt ring, 200))
 {
 …………………………………
 // Report error

MessageBox(…);
 }

…………………………………

StartUp

DWORD StartUp(HWND Handle, UINT SorterMessage)

This function call opens a communication channel between the device and the application, if
the Startup is successful the Device Identification Number is returned.

Valid in State : DeviceShutDown
State Transition : To DeviceStartingUp and then to DeviceChangeParameters

Arguments : HWND Handle – the handle to the application’s messages destination window.

UINT SorterMessage – a safe user message identifier defined inside the
application.

Return Value : DeviceID to be used for all further calls regarding this Reader. If 0

is retrieved an error occurred, use GetApiError or GetApiErrorString to get
more information about it.

Example

#define WM_SORTER_API (WM_APP+10) // Safe user de fined message
// for API

 ……………………
 DWORD m_DeviceID;
 char ApiErrorString[200];
 ……………………
 m_DeviceID = StartUp(m_hWnd, WM_SORTER_API);

if(!m_DeviceID)
 {
 …………………………………
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }

…………………………………

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

54

ShutDown

BOOL ShutDown(DWORD DeviceID)
This function closes the communication channel between the sorter and the pc

Valid in State : DeviceChangeParameters, DeviceOnLine, DeviceOffLine,

 DeviceStandBy
State Transition : to DeviceShutDown

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : TRUE if the communication has been closed in the proper way, if an

error occurred FALSE is returned, then call GetApiError or
GetApiErrorString to get more information about it.

Example

 char ApiErrorString[200];
 ……………………

if(!ShutDown (m_DeviceID))
 {
 …………………………………
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }

…………………………………

ChangeParameters

BOOL ChangeParameters(DWORD DeviceID)

This function forces the device in the DeviceChangeParameters state.

Valid in State : DeviceOnLine, DeviceOffLine
State Transition : to DeviceChangeParameters

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : FALSE if the device is not configurable to the DeviceChangeParameters

state, then call GetApiError or GetApiErrorString to get more information
about it.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

55

Example

 char ApiErrorString[200];

char pcDeviceStateString[100];
 ……………………

if(ChangeParameters (m_DeviceID))
{
// Get Device State String, it must be
// “DeviceChangeParameters”
GetDeviceStateString(DeviceID, pcDeviceStateString ,
 100);
}

else
 {
 …………………………………
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }

…………………………………

OnLine

BOOL OnLine(DWORD DeviceID)

This function forces the device into the OnLine state which is the operative state.

Valid in State : DeviceChangeParameters, DeviceOffLine
State Transition : to DeviceOnLine

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : FALSE if the device is not configurable to the DeviceOnLine state, then call

 GetApiError or GetApiErrorString to get more information about it.

Example

 char ApiErrorString[200];

char pcDeviceStateString[100];
 ……………………

if(OnLine (m_DeviceID))
{
// Get Device State String, it must be
// “DeviceOnLine”

GetDeviceStateString(DeviceID, pcDeviceStateString ,
 100);
}

else
 {

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

56

 …………………………………
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }

OffLine

BOOL OffLine(DWORD DeviceID)
This function forces the device into the OffLine state, this is the diagnostic state.

Valid in State : DeviceChangeParameters, DeviceOnLine
State Transition : to DeviceOffLine

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : FALSE if the device is not configurable to the DeviceOffLine state, then call

 GetApiError or GetApiErrorString to get more information about it.

Example

 char ApiErrorString[200];

char pcDeviceStateString[100];
 ……………………

if(OffLine (m_DeviceID))
{
// Get Device State String, it must be
// “DeviceOffLine”
GetDeviceStateString(DeviceID, pcDeviceStateString ,
 100);
}

else
 {
 ………………………………
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }

…………………………………

Parameters Managing Functions

SetSorterParameter

BOOL SetSorterParameter(DWORD DeviceID, USHORT unParamId,

 USHORT unParamValue)

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

57

Set a sorter parameter (see the chapter on FW Parameter Description).

Valid in State : DeviceChangeParameters, DeviceOffLine, DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 USHORT unParamId – the identification of the parameter that will be

changed.

 USHORT unParamValue – the value that will be set for the selected

unParamId.

Return Value : FALSE if an error occurs.

Example

USHORT ParamID;
USHORT ParamValue;

 char ApiErrorString[200];
 ……………………

if(!SetSorterParameter(m_DeviceID, ParamID, Param Value))
{
// Report error

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
…………………………………
}

GetSorterParameter

BOOL GetSorterParameter(DWORD DeviceID, USHORT unParamId, AParameter *

 pParamStruct)

Retrieve from the FW a sorter parameter (see the chapter on FW Parameter Description).

AParameter is a structure defined in this way:

• sDescription : String describing the Parameter
• sUnit : String describing the usable unit for the parameter
• usValue : Actual value of the parameter
• usDefault : Default value of the parameter
• usMin : Minimum value available
• usMax : Maximum value available

Valid in State : DeviceChangeParameters, DeviceOffLine, DeviceOnLine

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

58

State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 USHORT unParamId – the identification of the parameter for which the value

will be asked.

 AParameter * pParamStruct – the pointer to the structure in which the

Parameter will be stored.

Return Value : FALSE if an error occurred.

Example

 AParameter ParamStruct;

USHORT ParamID;
USHORT RetrievedValue;

 char ApiErrorString[200];
 ……………………

if(!GetSorterParameter(m_DeviceID, ParamID, &Para mStruct))
{
// Report error

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
…………………………………
}

else
{

 RetrievedValue = ParamStruct.usValue;
}

SetDeviceParameters

BOOL SetDeviceParameters(DWORD DeviceID, DeviceParameters DeviceParam)

Set the Device parameter structure containing the processing options setting in the API (see
the chapter about the DeviceParameters structure).

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 DeviceParameters DeviceParam – the structure containing all the processing

settings.

Return Value : FALSE if an error occurred.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

59

Example

DeviceParameters DevPar :
 char ApiErrorString[200];
 ……………………

// to call DeviceChangeParameters method you must b e in
// ChangeParameters state
if(ChangeParameters(m_DeviceID))

{
if(!DeviceChangeParameters(m_DeviceID, DevPar))

{
// Report error

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
…
}

…
 }

GetDeviceParameters

BOOL GetDeviceParameters (DWORD DeviceID , DeviceParameters *DeviceParam)

Retrieve the actual Device parameter structure (see the chapter about the DeviceParameters
structure).

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 DeviceParameters *DeviceParam – the pointer to the structure in which all the

actual processing settings will be stored.

Return Value : FALSE if an error occurred.

SetImageAdjustment

BOOL SetImageAdjustment(DWORD DeviceID, int Contrast, int Brightness, BOOL Front)

Set the parameters for the image adjustment. These parameters affect the result of the image
acquisition. Valid values for Contrast and Brightness are from -100 to 100. The API default is
zero for both, which means there is no correction applied.
NOTICE: This function is for special image requirements. It should not be used in “normal”
contest.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

60

Valid in State : DeviceChangeParameters, DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 int Contrast – image contrast adjustment

int Brightness – image brightness adjustment
BOOL Front – if TRUE the adjustment is related to the front image, FALSE to
the rear image.

Return Value : FALSE if an error occurred.

Example

// Set 10% of contrast correction on the front
if(!SetImageAdjustment(m_DeviceID, 10, 0, TRUE))
 {

// Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
…………………………………
}

SetMaxDpm

BOOL SetMaxDpm(DWORD DeviceID, int Dpm)

This function is intended for demo purposes. Set the DPM value (according to the max
available for that device, if there is an attempt to increase this number above the max possible
an error is returned, the max available DPM is stored in the IDCard). Use GetMaxDpm
function to retrieve the actual DPM setting. The available DPM values are the following:

DPM Doc length
independent

Doc length
dependent
Referred to 6” (152
mm) doc length

30 X
60 X
90 X
50 X
75 X
100 X

The DPM dependent on doc length means that the documents throughput is declared using the
reference document length. The reference document length is 6” (152 mm). This means that a

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

61

shorter document results in a higher DPM. A longer one results in a lower DPM. The
MyVisionX supports 30, 60 and 90. Vision|X support 50, 75 and 100 DPM.

Valid in State : DeviceChangeParameters, DeviceOffLine, DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 int Dpm – the number of Dpm to be set.

Return Value : FALSE if an error occurred.

Example

if(!SetMaxDpm(m_DeviceID, 30))
{
// Report error

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
…………………………………
}

GetMaxDpm

BOOL GetMaxDpm(DWORD DeviceID, int *Dpm)

Get the actual Dpm value. Use SetMaxDpm function to change the actual Dpm setting.

Valid in State : DeviceChangeParameters, DeviceOffLine, DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 int *Dpm – the pointer to the variable in which the number of DPM will be

returned.

Return Value : FALSE if an error occurred.

Example

 int Dpm;

// To use a 90 DPM device as a 60 DPM one.

 …………………………………
if(!GetMaxDpm(m_DeviceID, &Dpm))

{
// Report error

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

62

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);

…………………………………
}
if(Dpm == 90)

{
SetMaxDpm(m_DeviceID, 60)
}

SetAGPLines

BOOL SetAGPLines(DWORD DeviceID, BYTE Lines)

This function sets the enabled lines for the AGP printer (according to the max available for
that device, if there is an attempt to increase this number above the max possible an error is
returned, the max available lines is stored in the IDCard). Use GetIDCardDesciption function
to retrieve the actual enabled lines. Valid values for AGP lines are defined in the header file.
This function is intended for demo purposes.

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 BYTE Lines – the number of lines to be set.

Return Value : FALSE if an error occurred.

Example

// Downgrade an AGP 4 lines to 2 lines
if(!SetAGPLines(m_DeviceID, AGP_2_LINES))

{
// Report error

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
…………………………………
}

SetFeederLimit

BOOL SetFeederLimit(DWORD DeviceID, BYTE Limit)

This function sets the feeder limitation (according to the max available for that device, if there
is an attempt to increase this number above the max possible an error is returned, the max

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

63

available lines is stored in the IDCard). Use GetIDCardDesciption function to retrieve the
actual feeder limit. Valid values for Limit are defined in the header file.
This function is intended for demo purposes.

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 BYTE Limit – the feeder limit.

Return Value : FALSE if an error occurred.

Example

// Downgrade a FULL feeder device to a SMALL feeder
if(!SetFeederLimit(m_DeviceID, FEEDER_SMALL))

{
// Report error

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
…………………………………
}

SetHandDropDly

BOOL SetHandDropDly(DWORD DeviceID, DWORD Dly)

When the feeder is in Hand-Drop mode and the device is in Feeding state, when a document
is detected in the feeder, the device waits a certain delay and then feeds the document in the
track. This function can modify this delay.
The Delay range is from 100 to 60000 ms. The API default is 100 ms.

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 DWORD Dly – The delay expressed in ms.

Return Value : FALSE if an error occurred.

Example

// Set a delay of 1 second
if(!SetHandDropDly (m_DeviceID, 1000))

{
// Report error

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

64

 GetApiErrorString(ApiErrorString, 200);
MessageBox(…);
}

GetAvailablePockets

BOOL GetAvailablePockets(DWORD DeviceID, BYTE *pucPockets)

Get the pockets installed and enabled on the device.

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 BYTE *pucPockets – Destination buffer where the available pockets are

returned

Return Value : FALSE if an error occurred.

Example

// Get the available pockets
BYTE Pockets = 0;
ChangeParameters(DeviceID);
if(!GetAvailablePockets(DeviceID, &Pockets))
{

// Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
}

SetMaxPocket

BOOL SetMaxPocket(DWORD DeviceID, BYTE Pocket)

This function permits to temporary downgrade a 2 pockets device to a 1 pocket device. It
doesn’t update the IDCard. It’s intended for Demo purposes.

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

 BYTE Pocket – Pocket number (1 or 2)

Return Value : FALSE if an error occurred.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

65

Example

// Get the available pockets
BYTE Pockets = 0;
ChangeParameters(DeviceID);
if(!GetAvailablePockets(DeviceID, &Pockets))
{

// Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
}
else
{
 if(Pockets == 2)
 {
 if(!SetMaxPocket(DeviceID, 2))
 {

// Report error
GetApiErrorString(ApiErrorString, 200);
MessageBox(…);

}
}

}

SetVirtualEndorsementProperty

BOOL SetVirtualEndorsementProperty (DWORD DeviceID, DWORD AreaID,

DWORD PropID, LPVOID pData)

This function gets the value of a property field of an endorsement area. The application is able
to set all the area properties, even the predefined ones (Payee, BOFD and Transit).

Valid in State: DeviceChangeParameters, DeviceOnline
State Transition: none

Arguments: DWORD DeviceID – the Identification number of the device.

DWORD AreaID – It’s the area ID (see VApiInterface.h).
DWORD PropID – It’s the property ID (see VApiInterface.h).
LPVOID pData – It’s the user allocated buffer that contains the data.

Return Value: FALSE if an error occurs, call GetApiError or GetApiErrorString
 to get more information about it.

Example:
ChangeParameters(DeviceID);

// Rectangle
RECT Area = {1000,4250,2000,625};
SetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_RECT, (LPVOID)&Area);

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

66

GetVirtualEndorsementProperty

BOOL GetVirtualEndorsementProperty (DWORD DeviceID, DWORD AreaID,

DWORD PropID, LPVOID pData)

This function gets the value of a property field of an endorsement area.

Valid in State: DeviceChangeParameters, DeviceOnline
State Transition: none

Arguments: DWORD DeviceID – the Identification number of the device.

DWORD AreaID – It’s the area ID (see VApiInterface.h).
DWORD PropID – It’s the property ID.
LPVOID pData – It’s the user allocated buffer that receives the data.

Return Value: FALSE if an error occurs, call GetApiError or GetApiErrorString
 to get more information about it.

Example:
ChangeParameters(DeviceID);

// Rectangle
RECT Area;
GetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_RECT, (LPVOID)&Area);

// Font
LOGFONT font;
memset(&font, 0, sizeof(font));

GetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_FONT, (LPVOID)&font);
// Color
COLORREF Color;
GetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_COLOR, (LPVOID)&Color

);

// Rotation
DWORD Rot;
GetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_ROTATION, (LPVOID)&Rot

);

// Flags – Left horizontal alignment and word-wrap on
DWORD Flags;
GetVirtualEndorsementAreaProperty(DeviceID, ENDORS EMENT_AREA_BOFD,
 ENDORSEMENT_PARA M_FLAGS, (LPVOID)&Flags

);

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

67

On Line Functions

IsFeederEmpty

BOOL IsFeederEmpty(DWORD DeviceID, BOOL *pFlag)

This function returns to the application the status of the feeder sensor to detect the presence of
documents in the feeder. If the pFlag return value is TRUE, the feeder is empty. If FALSE the
feeder contains one or more documents.

Valid in State : DeviceOnLine
State Transition : None

Arguments : DWORD DeviceID – the Identification number of the device.

 BOOL *pFlag – This parameter receive the Feeder status result.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example:

 char ApiErrorString[200];

 …
if(OnLine (m_DeviceID))

{
BOOL bFeederEmpty = FALSE;
IsFeederEmpty(m_DeviceID, &bFeederEmpty);
if(bFeederEmpty)

{
 MessageBox(“…”);

}
else if(!StartFeeding(m_DeviceID))
 {

 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(“…”);
}

}

StartFeeding

BOOL StartFeeding(DWORD DeviceID)

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

68

With this call the device begins to feed documents. The feeding mode is set in
DeviceParameters structure (i.e. single or multiple document feeding, Main Hopper or Hand
Drop mode).

Valid in State : DeviceOnLine
State Transition : DeviceFeeding

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 char ApiErrorString[200];

…………………….
if(OnLine (m_DeviceID))
{

// Get Device State String, it must be
// “DeviceOnLine”
GetDeviceStateString(DeviceID, pcDeviceStateString ,
 100);
if(!StartFeeding(m_DeviceID))
 {

 …………………………………..
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(….);
}
…………………………………

}

StopFeeding

BOOL StopFeeding(DWORD DeviceID)

With this call the device stops feeding documents. If the Feeding mode is single document or
if an exception occurs, StopFeeding call is not needed.

Using a 30/60 DPM device, it works as a Start/Stop device while a 90 Dpm works as a flow
mode one. Calling StopFeeding function before setting the destination pocket, the device will
stop on the last fed document for a 30 or a 60 Dpm device, while for a 90 Dpm, due to its
feeding feature, the feeding will stop after the next document. For example with a 30/60 DPM
device it will be possible to stop the device, if a reject has been detected on a certain
document, when that document will reach the destination pocket. That won’t be available on
the 90 Dpm devices.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

69

A 2 pocket machine, which is a Start/Stop device, is always capable to stop the machine on
the last fed document.

Valid in State : DeviceFeeding
State Transition : DeviceOnLine

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 char ApiErrorString[200];

 ……………………

if(!StopFeeding(m_DeviceID))
{

 …………………………………
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
}
…………………………………

FreeTrack

BOOL FreeTrack(DWORD DeviceID , UCHAR ucPocket)

With this call the device enables the transport motor (at a lower speed) to free the track from
jammed documents sending them to the desired Pocket. For a 2 pocket machine it’s possible
to purge the track putting the documents in the second pocket. Using a 1 pocket machine the
destination pocket must be 1.

Valid in State : DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

UCHAR ucPocket – the destination pocket in which the document will be sent.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

70

 DWORD dwErrCode;
 char ApiErrorString[200];

……………………
 // Automatic FreeTrack when a jam occurred
 case WMPAR_SORTER_EXCEPTION:

 GetDeviceError(m_DeviceID, &dwErrCode);
 ……………………

if(dwErrCode == DEVICE_ERR_SORTER_ERROR_PENDING)
 {

// a jam has occurred
if(!FreeTrack(m_DeviceID, 1))
 {

 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
}
…………………………………

}
break;

SetPocket

BOOL SetPocket(DWORD DeviceID, DWORD dwDocId, UCHAR ucPocket)

With this call the destination pocket for the current document is set, remember to call this
function on WMPAR_SORTER_SET_ITEM_OUTPUT message. For a My Vision X with 1
pocket the application must set always 1. For a 2 pocket machine valid values are 1 and 2.

Valid in State : DeviceFeeding (SetItemOutput event)
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD dwDocId – the Identification number of the document.

UCHAR ucPocket – it’s the destination pocket in which the document will be
sent.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 DWORD DocNumber;
 char ApiErrorString[200];
 ……………………
 case WMPAR_SORTER_SET_ITEM_OUTPUT:

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

71

 DocNumber = (DWORD) LPARAM;
 ……………………

if(!SetPocket(m_DeviceID, DocNumber, 1))
 {

 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
}

…………………………………
break;

GetDocumentLength

BOOL GetDocumentLength(DWORD DeviceID, DWORD dwDocId,

 DWORD * pdwDocLength)

This function returns the length of the last processed document in millimeters. Due to
firmware limits this has to be considered as an informative value, and the expected error
tolerance is +-3mm.

Valid in State : DeviceFeeding
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD dwDocId – the Identification number of the document.

DWORD * pdwDocLength – pointer to the variable where the length of the
document will be written

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 DWORD DocNumber;

DWORD DocLen;
 char ApiErrorString[200];
 ……………………
 case WMPAR_SORTER_MICR_AVAILABLE:
 DocNumber = (DWORD) LPARAM;

 ……………………
if(!GetDocumentLength(m_DeviceID, DocNumber,

 &DocLen))
 {

 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

72

}
…………………………………
break;

GetMicrCodeline

BOOL GetMicrCodeline(DWORD DeviceID, CHAR * pcDestination,

DWORD dwMaxLength)

This function returns the last recognized MICR codeline. The character after the ‘\0’ NULL
terminator represents the font found for the recognized codeline. It will be ‘E’ for E13B or
‘C’ for CMC7 (this feature is useful only if MICR auto recognition is selected); ‘V’ means
void string (no codeline).

Valid in State : DeviceFeeding (MicrAvailable event)
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

CHAR * pcDestination – the destination string for the MICR codeline.

DWORD dwMaxLength – Length of the user allocated buffer pointed to by
pcDestination

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 char MICRCodeline[80];
 char ApiErrorString[200];

char MICRFont;
 ……………………
 case WMPAR_SORTER_MICR_AVAILABLE:

// MICRCodeline string will contain the recognized
codeline
if(!GetMicrCodeline(m_DeviceID, MICRCodeline, 80))
 {

 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
}

else
{
// In auto mode to understand the font type
swicth(MICRCodeline[strlen(MICRCodeline) + 1])

{

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

73

case ’C’:
 // CMC7 codeline
 ……………………
case ‘E’:
 // E13B codeline
 ……………………
case ‘V’:
 // void codeline
 ……………………
}

}
…………………………………
break;

GetOCRCodeline

BOOL GetOCRCodeline GetOCRCodeline(DWORD DeviceID, BYTE* pBmp,

char* pDestString, DWORD StringLen,
int Font, int Threshold)

This function returns the recognized OCR codeline and Barcode. It is called to decode a
memory bitmap with the OCR engine (including Bitmap File Header and Bitmap Info
Header).

The OCR and Barcode available fonts are:

OCR1_OCRA 0x0001 : OCR-A Euro limited
OCR1_OCRB 0x0002 : OCR-B Euro limited
OCR1_OCRAB 0x0003 : OCR-A and OCR-B Euro limited
OCR1_OCRBUK 0x0004 : OCR-B extended for UK banking
OCR1_E13BO 0x0005 : E13B optical
OCR1_E13BOXOCRBUK 0x0006 : E13B + OCRB for UK, switched on 'X'
OCR1_OCRAALNUM 0x0007 : OCR A alphanumeric
OCR1_OCRBALNUM 0x0008 : OCR B alphanumeric
OCR1_OCRB1403 0x0009 : OCRB 1403M
OCR1_OCRAN 0x000A : OCRA numeric for use with OCRB1403

OCR1_BC128 0x0010 : Barcode Code 128
OCR1_BC39 0x0011 : Barcode Code 39
OCR1_BC2OF5 0x0012 : Barcode Interleaved 2 of 5
OCR1_BCUPCA 0x0013 : Barcode UPCA
OCR1_BCEAN13 0x0014 : Barcode EAN 13
OCR1_BCUPCE 0x0015 : Barcode UPCE
OCR1_BCEAN8 0x0016 : Barcode EAN 8
OCR1_BCPDF417 0x0017 : Barcode PDF417
OCR1_CMC7O 0x0018 : CMC7 Optical

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

74

The valid range for the Reject threshold is 10-100, lower value generates more rejects, and
reasonable values are between 35 and 55.

Valid in State : all
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

BYTE * pBmp – pointer to the image buffer.

char * pDestString – destination string pointer.

DWORD StringLen – Length of the string pointed to by pDestString.

int Font – OCR Font.

int Threshold – Reject Threshold.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 char OCRCodeline[80];
 char ApiErrorString[200];

BYTE *pSnippetBuffer;
ImagesStruct *SnippetStruct;

 ……………………
 case WMPAR_SORTER_SNIPPET_READY:
 // Recognizing snippet 0 bitmap with OCR font

SnippetStruct = (ImagesStruct *) LPARAM;
 pSnippetBuffer = SnippetStruct->Images[0].pBuffe r;

// OCRCodeline string will contain the recognized
codeline
if(!GetOCRCodeline(m_DeviceID, pSnippetBuffer,

 OCRCodeline, 80, OCR1_OCRA, 55))
 {

 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(….);
}

break;

SendPrinterData

BOOL SendPrinterData (DWORD DeviceID, DWORD dwHead, LOGFONT lf,

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

75

char *sText, DWORD dwTextOffset, char *sImgPath, DWORD
dwImgOffset, DWORD dwImgSrcType)

This function is used to define the printer text and bitmap data, their position on the document
and the font used to create the text.
The bitmap image can be loaded from a file, or passed directly by its memory address (as a
DIB, Device Independent Bitmap).
All Windows fonts can be selected and used for the printed text. Printer default font has been
chosen to optimize uppercase characters usage. Lowercase letters could lose some detail at the
very upper or very lower end, and in this case a font size reduction could be needed.

Valid in State: Smart Printer disabled

This function has to be called in DeviceOnline state, before the
StartFeeding call, for the first document. For the next documents, in
DeviceFeeding state, has to be called during
WMPAR_SORTER_NEW_DOCUMENT. For 30 and 60 DPM machine
this function can be called during
WMPAR_SORTER_SET_ITEM_OUTPUT, instead of
WMPAR_SORTER_NEW_DOCUMENT.
When the Smart Printer is disabled, the printer is an up-stream device. This
means that the printer information have to be defined before the document
feeding. Thus, the call before StartFeeding defines the printer data for the
first document. The following calls, during
WMPAR_SORTER_NEW_DOCUMENT message, define the printer data
for the next document.
Example of printer sequence:

1. SendPrinterData(…) for the 1st doc
2. StartFeeding(…)
3. During NEW_DOC message of the 1st doc call SendPrinterData(…)

for the 2nd doc
4. During NEW_DOC message of the nth doc call

SendPrinterData(…) for the n+1th doc

Smart Enabled
This function has to be called during the
WMPAR_SORTER_SET_ITEM_OUTPUT message for all the machines.
When Smart printer is enabled, the printer is a downstream device. This
means that the printer information can be defined after MICR and/or OCR
information are available.
Example of printer sequence:

1. Call StartFeeding(…)
2. During SET_ITEM_OUTPUT message of the 1st doc call

SendPrinterData(…) for the 1st doc
3. During SET_ITEM_OUTPUT message of the nth doc call

SendPrinterData(…) for the nth doc

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

76

State Transition: none

Arguments:
DWORD DeviceID - The Identification number of the device .
DWORD dwHead - Printing head selector. Must be always 0.
LOGFONT lf - Font descriptor. Setting this structure to all zero

means default font.
My Vision X AGP default is Arial, 16, normal.
My Vision X no AGP (single line) default is Arial,
12, normal.

char * sText - User-allocated string containing the text to be printer.
Capital letters are suggested.
A NULL value means that no text will be printed.

DWORD dwTextOffset - Horizontal position of the printing text on the
document referred to the leading or to the trailing
edge. The position is expressed in mm.

char * sImgPath - User-allocated string containing the path to the
Bitmap image or user-allocated buffer pointing the
DIB (Device Independent Bitmap) in memory.
A NULL value means that no image will be printed.

DWORD dwImgOffset - Horizontal Position of the image on document
referred to leading or the trailing edge. . The position
is expressed in mm.
Since API version 2.11.1.2 this value can express a
vertical position in pixels. This option is available
only for the AGP with 2 lines enabled and when
there’s no text to print (sText is NULL or empty).
The position is expressed in pixels. The values range
is form 0 to 49. The LSBytes of the DWORD must
contain the horizontal position in mm. The MSBytes
must contain the vertical position in pixels.

DWORD dwImgSrcType - Define sImgPath parameter type. Values are:
PRT_SRC_FILE: sImgPath is a path to a file
PRT_SRC_MEM_PTR: sImgPath is a pointer to a
memory buffer

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 char ApiErrorString[200];

……………………

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

77

 // Send printer data for the first document
if(!SendPrinterData(m_DeviceID, 0, m_LogFont, Str ingToPrint,
 m_TextTab, pBmpToPrint, m_BmpTab, PRT_SRC_FIL E))

 {
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }
 else

{
 // Now the Device is ready to feed the first Docu ment

// the ID number of the Device is the only paramete r of the
// StartFeeding function

 StartFeeding(m_DeviceID);
 }
 ……………………
 // Send printer data for the next documents
 case WMPAR_SORTER_SET_ITEM_OUTPUT :

if(!SendPrinterData(m_DeviceID, 0, m_LogFont,
StringToPrint, m_TextTab, pBmpToPrint, m_BmpTab,
PRT_SRC_FILE))

 {
 // Report error
 GetApiErrorString(ApiErrorString, 200);

MessageBox(…);
 }
 ……………………
 break;

// Example for vertical position (for AGP 2 lines, no text)
DWORD dwBmpHorizPos = 10; // in mm
DWORD dwBmpVertPos = 20; // in pixels

SendPrinterData(m_DeviceID, 0, m_LogFont, “”, 0,
 pBmpToPrint,(dwBmpVertPos<<16)| dwBmpHorizPos, PRT _SRC_FILE);

SetVirtualEndorsement

BOOL SetVirtualEndorsement (DWORD DeviceID, DWORD AreaID, char *sText, char

*sBmpPath, DWORD BmpSrcType)
This function is used to define the printer text and the bitmap data of a certain Virtual
endorsement area during the document processing.
The text is a string that contains one or more lines separated by a ‘\n’ character.
The bitmap image can be loaded from a file.

Valid in State: Smart Printer disabled

This function has to be called in DeviceOnline state, before the
StartFeeding call, for the first document. For the next documents, in
DeviceFeeding state, has to be called during

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

78

WMPAR_SORTER_NEW_DOCUMENT. For 30 and 60 DPM machine
this function can be called during
WMPAR_SORTER_SET_ITEM_OUTPUT, instead of
WMPAR_SORTER_NEW_DOCUMENT.
When the Smart Printer is disabled, the printer is an up-stream device. This
means that the printer information have to be defined before the document
feeding. Thus, the call before StartFeeding defines the printer data for the
first document. The following calls, during
WMPAR_SORTER_NEW_DOCUMENT message, define the printer data
for the next document.
Example of printer sequence:

5. SetVirtualEndorsement(…) for the 1st doc
6. StartFeeding(…)
7. During NEW_DOC message of the 1st doc call

SetVirtualEndorsement (…) for the 2nd doc
8. During NEW_DOC message of the nth doc call

SetVirtualEndorsement (…) for the n+1th doc

Smart Enabled
This function has to be called during the
WMPAR_SORTER_SET_ITEM_OUTPUT message for all the machines.
When Smart printer is enabled, the printer is a downstream device. This
means that the printer information can be defined after MICR and/or OCR
information are available.
Example of printer sequence:

4. Call StartFeeding(…)
5. During SET_ITEM_OUTPUT message of the 1st doc call

SetVirtualEndorsement (…) for the 1st doc
6. During SET_ITEM_OUTPUT message of the nth doc call

SetVirtualEndorsement (…) for the nth doc
Valid in State: DeviceOnline, DeviceFeeding (SetItemOutput event)
State Transition: none
Arguments:
DWORD DeviceID - The Identification number of the device
DWORD AreaID - Sets the Area ID. Its values are defined in

VApiInterface.h.
char *sText - The text to be printed on the image. It can contain

multiple lines of text separated by a ‘\n’ character.
char *sBmpPath - The path to a bitmap file. It can be a 1, 8 or 24 bpp

image. The bitmap are automatically converted in the
color space of the image (i.e. color converted in
greyscale, color in black and white and greyscale in
black and white). If the bitmap header contains the
resolution of the image, it is automatically rescaled to
the document image resolution. If the bitmap header

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

79

doesn’t define any resolution it is copied pixelwise
on the document image.

DWORD BmpSrcType - Sets the bitmap type. Only file path are admitted. Its
value is defined in VApiInterface.h.

Return Value: FALSE if an error occurs, call GetApiError or GetApiErrorString to get more
information about it.
Example:
char ApiErrorString[200];
…
// Set the data for the first document. The applica tion is able to
// call the function multiple times per document.
if(!SetVirtualEndorsement(m_DeviceID, ENDORSEMENT_ AREA_BOFD, ”\n\nBOFD

area”, NULL, 0))
{
 // Report error
 GetApiErrorString(ApiErrorString, 200);
 MessageBox(…);
}
else
{
 // Now the Device is ready to feed the first Docu ment
 // the ID number of the Device is the only parame ter of the
 // StartFeeding function
 StartFeeding(m_DeviceID);
}
…
// Send printer data for the next documents
case WMPAR_SORTER_SET_ITEM_OUTPUT :
 if(!SetVirtualEndorsement(m_DeviceID, ENDORSEMEN T_AREA_BOFD,”\n\nBOFD

area”, NULL, 0))
 {
 // Report error
 GetApiErrorString(ApiErrorString, 200);
 MessageBox(…);
 }
 …
 break;

FreeImageBuffer

BOOL FreeImagesBuffer(ImagesStruct *pImageStruct)

This function Frees the memory used for the Image buffers, the application must call this
method when the buffers are no longer needed.

Valid in State : all
State Transition : none
Arguments : ImagesStruct * pImageStruct – the Image Structure to be released.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

80

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString
 to get more information about it.

Example

 ImagesStruct * pImages;
 ………………………………
 case WMPAR_IMAGES_READY:
 pImages = (ImagesStruct *)LPARAM;
 ……………………………………
 FreeImagesBuffer(pImages);
 pImages = NULL;
 break;

FreeSnippetBuffer

BOOL FreeSnippetBuffer(ImagesStruct *pImageStruct)

This function Frees the memory used for the Snippet buffers, the application must call this
method when the buffers are no longer needed.

Valid in State : all
State Transition : none

Arguments : ImagesStruct * pImageStruct – the Snippet Structure to be released.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

 ImagesStruct * pSnippets;
 ………………………………
 case WMPAR_IMAGES_READY:
 pSnippets = (ImagesStruct *)LPARAM;
 ……………………………………
 FreeImagesBuffer(pSnippets);
 pSnippets = NULL;
 break;

Serial Functions
The Vision|X device mounts a RS232 port.
The following functions manage the communication through this port with other “external”
devices.
The application can set the baud rate from 300 to 57600 using Rs232SetBaud.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

81

The firmware maintains a TX and a RX buffer both of 255 bytes.
When the Application sends data through the MVX serial port using Rs232Write, the data are
stored in the TX buffer and are immediately transmitted at the right baud rate.
When an “external” device sends data to the MVX, the firmware temporarily stores them in
the RX buffer. The application detects the received data using Rs232GetLen and transfers
them in a local buffer using Rs232Read.
These functions are temporary disabled when a serial Panini dongle is connected with the
device.

Rs232SetBaud

BOOL Rs232SetBaud(DWORD DeviceID, UINT BaudRate)

Set the serial port BaudRate. Valid values are from 300 to 57600.

Valid in State : DeviceChangeParameters
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD BaudRate – the BaudRate value.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

// Set 9600 baud
Rs232SetBaud(m_dwDeviceID, 9600);

Rs232Write

BOOL Rs232Write(DWORD DeviceID, BYTE *pBuffer, BYTE Len)

This function sends pBuffer data through the serial port.

Valid in State : DeviceOnLine, DeviceFeeding
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

BYTE *pBuffer – Buffer of the data to be sent.

BYTE Len – The length of the buffer. The range is from 1 to 255.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

82

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString
 to get more information about it.

Example

// Data buffer
BYTE Buffer[] = {0x02, 0x30, 0x31, 0x32, 0x03};
// Send buffer through the serial port
Rs232Write(m_dwDeviceID, Buffer, sizeof(Buffer));

Rs232GetLen

BOOL Rs232GetLen(DWORD DeviceID, BYTE *pLen)

This function reads the length of the data contained in the device reception buffer.
This length should be used to call Rs232Read.

Valid in State : DeviceOnLine, DeviceFeeding
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

BYTE *pLen – the destination buffer for the returned length. The returned
values are from 0 to 255.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

// Data buffer
BYTE Buffer[] = {0x02, 0x30, 0x31, 0x32, 0x03};
// Send buffer through the serial port
Rs232Write(m_dwDeviceID, Buffer, sizeof(Buffer));

Rs232Read

BOOL Rs232Read(DWORD DeviceID, BYTE *pBuffer, BYTE Len)

This function transfers the data contained in the device reception buffer. The length of the
data to be transferred is indicated by a previous call to Rs232GetLen.

Valid in State : DeviceOnLine, DeviceFeeding
State Transition : none

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

83

Arguments : DWORD DeviceID – the Identification number of the device.

BYTE *pBuffer – the destination buffer for the returned data.

BYTE Len - The length of the data to be transferred in pBuffer. Valid values
are from 1 to 255 and must be less than or equal to the value returned by
Rs232GetLen.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString
 to get more information about it.

Example

// Data buffer
BYTE Buffer[255];
BYTE Len;

// Receive buffer through the serial port
Rs232GetLen(m_dwDeviceID, &Len);
if(Len > 0)
 Rs232Read(m_dwDeviceID, Buffer, Len);

Maintenance Functions

ReadPrinterDropsCounter

BOOL ReadPrinterDropsCounter(DWORD DeviceID, DWORD *pdwDropsCounter)

The device is able to count the number of ink drops fired by the printer cartridge enabling the
user application to monitor the cartridge consumption status. This function reads the printer
cartridge’s drops counter. It’s available for every kind of printer device (Single line and AGP
multi-line).

Valid in State : DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

DWORD *pdwDropsCounter – the destination buffer for the returned data.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString
 to get more information about it.

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

84

ResetPrinterDropsCounter

BOOL ReadPrinterDropsCounter(DWORD DeviceID)

This function resets the drops counter for the printer cartridge. This function should be used to
reset the drops counter after the ink-jet cartridge replacement. The user application is
responsible for deciding when the ink cartridge needs to be replaced, refer to the relative
technical bulletin for the respective ink quantity in each type of ink cartridge.

Valid in State : DeviceOnLine
State Transition : none

Arguments : DWORD DeviceID – the Identification number of the device.

Return Value : FALSE if an error occurs, call GetApiError or GetApiErrorString

 to get more information about it.

Example

// Data buffer
DWORD DropsCnt;

// Read the actual drops counter and control if the
// cartridge needs to be replaced
ReadPrinterDropsCounter(m_dwDeviceID, &DropsCnt);
if(DropsCnt > MAX_DROPS_COUNTER)
{
 MessageBox(“Replace the cartridge”);
 ResetPrinterDropsCounter(m_dwDeviceID);
}

GetPrinterCartridgeInfo

BOOL GetPrinterCartridgeInfo(DWORD DeviceID, BOOL *bInserted, DWORD
*pCartridgeID)

This function has the capability to detect the presence of the ink-jet cartridge in the device
nest (Single line and AGP both) and can return the cartridge ID number for the AGP version.
This ID can be used to detect when a cartridge is replaced. The presence flag can be used,
when the printer is enabled, to check if the printer cartridge is correctly mounted before
starting a printing job.
It can be called before starting a printing job to verify if the cartridge is correctly mounted.
This feature is not available for the previous version of the MyVisionX. For the previous
version of the device the cartridge is considered always inserted and the ID is always 0.

Valid in State : DeviceOnLine

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

85

State Transition : none

Arguments : DWORD DeviceID - the ID number of the device returned by the StartUp
 BOOL *pInserted - receive the presence flag. If TRUE means cartridge

inserted. If FALSE means cartridge not mounted.
 DWORD *pCartridgeID - receive the AGP cartridge ID. For a single line

printer this value is always 0. For an AGP printer this value is not 0 only when
the presence flag is TRUE.

Example

// Data buffer
BOOL Inserted = FALSE;
DWORD CartridgeID = 0;

// get the cartridge info when printer is enabled
GetPrinterCartridgeInfo(DeviceID, &Inserted, &Cart ridgeID);
if(Inserted == FALSE)
{
 // The cartridge is not present

// EXAMPLE: Ask to user to insert the cartridge
}

Magnetic card reader
The Vision|X device makes available a Magnetic card reader. This device is compliant with
the standard ISO 7810, 7811 and 7813.

This feature introduces a new message for the application (defined in VApiInterface.h):
WMPAR_MAGCARD .
The message is sent to the application when a card is passed in front of the reading head. The
device state has to be set to OnLine. In any other state the magcard reader is disabled.

The LPARAM field of the message contains an error code. Here is a list of them:
Magcard error code Description
MAGCARD_ERROR_NONE Magcard decoding successful. The

application has to call GetMagCardResult in
order to obtain the result (ASCII string).

MAGCARD_ERROR_PARITY A parity error has been detected. Ask for a
new read. No data returned.

MAGCARD_ERROR_STANDARD The standard of the magcard is not
supported. The application has to call
GetMagCardResult in order to obtain the bit-
stream of the card. The API is not able to
decode the card, but the application has the
raw data and could proceed to decode the
card by itself.

MAGCARD_ERROR_DIRECTION The card has been passed in the wrong

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

86

direction. No data returned.

GetMagCardResult

BOOL GetMagCardResult(DWORD DeviceID, PCHAR sResult, DWORD BufferLen)

This function has to be called when the application receive the message
WMPAR_MAGCARD. When the magcard has been decoded without error, it returns an
ASCII string. When the standard of the magcard bit-stream it’s not recognized, the function
return the raw bit-stream data in order to permit to the application to decode the magcard by
itself. When parity or direction error has been detected no data will be returned.
This function is not available for the previous version of the MyVisionX.

Valid in State: DeviceOnLine
State Transition: none

Arguments: DWORD DeviceID - the ID number of the device returned by the StartUp
 PCHAR sResult - receive the magcard result (this buffer has to be allocated by

the application)
 DWORD BufferLen – it’s the sResult buffer length. We suggest to allocate at

least MAGCARD_MIN_BUFFER_LEN bytes.

Example

case WMPAR_MAGCARD:
{
 DWORD ErroCode = (DWORD)lParam;
 char sMagCardResult[MAGCARD_MIN_BUFFER_LEN];

 memset(sMagCardResult, 0, sizeof(sMagCardResult));
 if(GetMagCardResult(DeviceID,sMagCardResult,siz eof(sMagCardResult)))
 {
 switch(ErroCode)
 {
 case MAGCARD_ERROR_NONE:
 {
 MessageBox(sMagCardResult, "MagCard reader result",
 MB_OK|MB_ICONINFORMATION| MB_TOPMOST);
 }
 break;

 case MAGCARD_ERROR_PARITY:
 MessageBox("Data corrupted!\nPlease, pass again the card.",
 "MagCard reader result",

MB_OK|MB_ICONWARNING|MB_TOPMOST);
 break;

case MAGCARD_ERROR_STANDARD:
 {
 MessageBox("Card not supported!\nBitstream on disk.",
 "MagCard reader result",

 MB_OK|MB_ICONSTOP|MB_TOPMOST);

Panini Vision API Reference Manual
June 30, 2008

The information contained herein is the confidential, unpublished property of Panini SPA and all unauthorized use and reproduction is
prohibited. Copyright 2005 by Panini Spa, Turin, Italy. All rights reserved.

87

 FILE *f = fopen("MagCardBitStream.bin", "w +");
 if(f)
 {
 fwrite(sMagCardResult, 1, sizeof(sMagCar dResult), f);
 fclose(f);
 }
 }
 break;

 case MAGCARD_ERROR_DIRECTION:
 MessageBox("Wrong reading direction! ",
 "MagCard reader result",

MB_OK|MB_ICONSTOP|MB_TOPMOST);
 break;
 }
 }
 else
 {
 // API error
 }
}
break;

